World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
UK Dementia Research Institute at Imperial College London
Showing your local timezone
Schedule
Sunday, December 13, 2020
12:00 PM Europe/London
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
Imperial Centre for Neurotechnology
Seminar location
No geocoded details are available for this content yet.
Alzheimer’s Disease is characterised by the accumulation of misfolded proteins, namely amyloid and tau, however it is synapse loss which leads to the cognitive impairments associated with the disease. Many studies have focussed on single time points to determine the effects of pathology on synapses however this does not inform on the plasticity of the synapses, that is how they behave in vivo as the pathology progresses. Here we used in vivo two-photon microscopy to assess the temporal dynamics of axonal boutons and dendritic spines in mouse models of tauopathy[1] (rTg4510) and amyloidopathy[2] (J20). This revealed that pre- and post-synaptic components are differentially affected in both AD models in response to pathology. In the Tg4510 model, differences in the stability and turnover of axonal boutons and dendritic spines immediately prior to neurite degeneration was revealed. Moreover, the dystrophic neurites could be partially rescued by transgene suppression. Understanding the imbalance in the response of pre- and post-synaptic components is crucial for drug discovery studies targeting the synapse in Alzheimer’s Disease. To investigate how sub-types of synapses are affected in human tissue, the Multi-‘omics Atlas Project, a UKDRI initiative to comprehensively map the pathology in human AD, will determine the synaptome changes using imaging and synaptic proteomics in human post mortem AD tissue. The use of multiple brain regions and multiple stages of disease will enable a pseudotemporal profile of pathology and the associated synapse alterations to be determined. These data will be compared to data from preclinical models to determine the functional implications of the human findings, to better inform preclinical drug discovery studies and to develop a therapeutic strategy to target synapses in Alzheimer’s Disease[3].
Johanna Jackson
Dr
UK Dementia Research Institute at Imperial College London
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe