Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
Back to SeminarsBack
Seminar✓ Recording AvailableNeuroscience

Targeting the synapse in Alzheimer’s Disease

Johanna Jackson

Dr

UK Dementia Research Institute at Imperial College London

Schedule
Monday, December 14, 2020

Showing your local timezone

Schedule

Monday, December 14, 2020

10:00 AM Europe/London

Watch recording
Host: Imperial Centre for Neurotechnology

Watch the seminar

Your browser does not support the video tag.

Recording provided by the organiser.

Event Information

Domain

Neuroscience

Original Event

View source

Host

Imperial Centre for Neurotechnology

Duration

70 minutes

Abstract

Alzheimer’s Disease is characterised by the accumulation of misfolded proteins, namely amyloid and tau, however it is synapse loss which leads to the cognitive impairments associated with the disease. Many studies have focussed on single time points to determine the effects of pathology on synapses however this does not inform on the plasticity of the synapses, that is how they behave in vivo as the pathology progresses. Here we used in vivo two-photon microscopy to assess the temporal dynamics of axonal boutons and dendritic spines in mouse models of tauopathy[1] (rTg4510) and amyloidopathy[2] (J20). This revealed that pre- and post-synaptic components are differentially affected in both AD models in response to pathology. In the Tg4510 model, differences in the stability and turnover of axonal boutons and dendritic spines immediately prior to neurite degeneration was revealed. Moreover, the dystrophic neurites could be partially rescued by transgene suppression. Understanding the imbalance in the response of pre- and post-synaptic components is crucial for drug discovery studies targeting the synapse in Alzheimer’s Disease. To investigate how sub-types of synapses are affected in human tissue, the Multi-‘omics Atlas Project, a UKDRI initiative to comprehensively map the pathology in human AD, will determine the synaptome changes using imaging and synaptic proteomics in human post mortem AD tissue. The use of multiple brain regions and multiple stages of disease will enable a pseudotemporal profile of pathology and the associated synapse alterations to be determined. These data will be compared to data from preclinical models to determine the functional implications of the human findings, to better inform preclinical drug discovery studies and to develop a therapeutic strategy to target synapses in Alzheimer’s Disease[3].

Topics

Alzheimer'samyloidaxonal boutonsdementiadendritic spinesneurite degenerationsynapse losssynaptometautwo-photon imagingtwo-photon microscopy

About the Speaker

Johanna Jackson

Dr

UK Dementia Research Institute at Imperial College London

Contact & Resources

Personal Website

www.imperial.ac.uk/people/johanna.jackson

Related Seminars

Seminar60%

Pancreatic Opioids Regulate Ingestive and Metabolic Phenotypes

neuro

Jan 12, 2025
Washington University in St. Louis
Seminar60%

Exploration and Exploitation in Human Joint Decisions

neuro

Jan 12, 2025
Munich
Seminar60%

The Role of GPCR Family Mrgprs in Itch, Pain, and Innate Immunity

neuro

Jan 12, 2025
Johns Hopkins University
January 2026
Full calendar →