World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr
University of California, Santa Barbara
Showing your local timezone
Schedule
Sunday, August 29, 2021
9:00 AM America/Los_Angeles
Seminar location
No geocoded details are available for this content yet.
Recording provided by the organiser.
Format
Recorded Seminar
Recording
Available
Host
SLAAM by UC Merced
Seminar location
No geocoded details are available for this content yet.
Interfaces and membranes are ubiquitous in cellular systems across various scales. From lipid membranes to the interfaces of biomolecular condensates inside the cell, these borders not only protect and segregate the inner components from the outside world, but also are actively participating in mechanical regulation and biochemical reaction of the cell. Being part of a living system, these interfaces (membranes) are usually active and away from equilibrium. Yet, it's still not clear how activity can tweak their equilibrium dynamics. Here, I will introduce a model system to tackle this problem. We put together a passive fluid and an active nematics, and study the behavior of this liquid-liquid interface. Whereas thermal fluctuation of such an interface is too weak to be observed, active stress can easily force the interface to fluctuate, overhang, and even break up. In the presence of a wall, the active phase exhibits superfluid-like behavior: it can climb up walls -- a phenomenon we call activity-induced wetting. I will show how to formulate theories to capture these phenomena, highlighting the nontrivial effects of active stress. Our work not only demonstrates that activity can introduce interesting features to an interface, but also sheds light on controlling interfacial properties using activity.
Zhihong You
Dr
University of California, Santa Barbara
Contact & Resources
open source
When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. F
neuro
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe