Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.

World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
← Back

Transport Dispersion Active Particles

Back to SeminarsBack
SeminarPast EventPhysics of Life

Transport and dispersion of active particles in complex porous media

David Saintillan

Prof

University of California San Diego

Schedule
Tuesday, October 27, 2020

Showing your local timezone

Schedule

Tuesday, October 27, 2020

4:00 PM Europe/London

Host: BioActive Fluids

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

Access Seminar

Event Information

Format

Past Seminar

Recording

Not available

Host

BioActive Fluids

Seminar location

Seminar location

Not provided

No geocoded details are available for this content yet.

World Wide map

Abstract

Understanding the transport of microorganisms and self-propelled particles in porous media has important consequences in human health as well as for microbial ecology. In this work, we explore models for the dispersion of active particles in both periodic and random porous media. In a first problem, we analyze the long-time transport properties in a dilute system of active Brownian particles swimming in a periodic lattice in the presence of an external flow. Using generalized Taylor dispersion theory, we calculate the mean transport velocity and dispersion dyadic and explain their dependence on flow strength, swimming activity and geometry. In a second approach, we address the case of run-and-tumble particles swimming through unstructured porous media composed of randomly distributed circular pillars. There, we show that the long-time dispersion is described by a universal hindrance function that depends on the medium porosity and ratio of the swimmer run length to the pillar size. An asymptotic expression for the hindrance function is derived in dilute media, and its extension to semi-dilute and dense media is obtained using stochastic simulations. We conclude by discussing the role of hydrodynamic interactions and swimmer concentration effects.

Topics

active particlesbrownian particlesdispersionfluidshydrodynamic interactionsmedium porosityporous mediarun-and-tumble particlesstochastic simulationstaylor dispersion theory

About the Speaker

David Saintillan

Prof

University of California San Diego

Contact & Resources

Personal Website

stokeslet.ucsd.edu

Related Seminars

Seminar42% match - Relevant

Towards open meta-research in neuroimaging

open source

When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. F

Dec 8, 2024
ORIGAMI - Neural data science - https://neurodatascience.github.io/
Seminar42% match - Relevant

Continuous guidance of human goal-directed movements

neuro

Dec 9, 2024
VU University Amsterdam
Seminar42% match - Relevant

Genetic and epigenetic underpinnings of neurodegenerative disorders

neuro

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe

Dec 10, 2024
MIT Department of Biology
World Wide calendar

World Wide highlights

December 2025 • Syncing the latest schedule.

View full calendar
Awaiting featured picks
Month at a glance

Upcoming highlights