World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.
Review the Privacy Policy for details about analytics processing.
Dr.
Yale University
Showing your local timezone
Schedule
Monday, November 9, 2020
4:00 PM Canada/Eastern
Seminar location
No geocoded details are available for this content yet.
Format
Past Seminar
Recording
Not available
Host
McGill Neuro
Seminar location
No geocoded details are available for this content yet.
The Arnsten lab studies molecular influences on the higher cognitive circuits of the dorsolateral prefrontal cortex (dlPFC), in order to understand mechanisms affecting working memory at the cellular and behavioral levels, with the overarching aim of identifying the actions that render the dlPFC so vulnerable in cognitive disorders. Her lab has shown that the dlPFC has unique neurotransmission and neuromodulation compared to the classic actions found in the primary visual cortex, including mechanisms to rapidly weaken PFC connections during uncontrollable stress. Reduced regulation of these stress pathways due to genetic or environmental insults contributes to dlPFC dysfunction in cognitive disorders, including calcium dysregulation and tau phosphorylation in the aging association cortex. Understanding these unique mechanisms has led to the development of a new treatment, IntunivTM, for a variety of PFC disorders.
Amy Arnsten
Dr.
Yale University
Contact & Resources
neuro
neuro
The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss t
neuro
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzhe