Aerosol
aerosol transmission
The life of a mucosalivary droplet: Lessons from synthetic breaths and sneezes
The main transmission mode of the COVID-19 disease is through virus-laden aerosols and droplets generated by expiratory events, such as breathing and sneezing. Patients with respiratory diseases are typically treated with oxygenation devices in hospitals, homes, and other settings where they increase the risk of spreading the disease to caregivers and first responders. Here, I will discuss a systematic study of aerosol and droplet dispersal through the air and their final deposition on surfaces. Through laser and fluorescent imaging techniques, we measure the volumetric spatial-temporal dynamics of droplet dispersal while varying rheological properties of the mucosaliva. We then demonstrate that a standard nose and mouth mask reduces the amount of mucosaliva dispersed by a factor of at least a hundred. Our ongoing collaborations with doctors and respiratory therapists from the Baystate Medical Hospital are developing new guidelines to help mitigate disease spread in a hospital setting.
Soft matter physics and the COVID-19 pandemic
Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes controls their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. I will survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.