← Back

Appetite Regulation

Topic spotlight
TopicWorld Wide

appetite regulation

Discover seminars, jobs, and research tagged with appetite regulation across World Wide.
3 curated items3 Seminars
Updated about 3 years ago
3 items · appetite regulation
3 results
SeminarNeuroscience

Gut food cravings? How gut signals control appetite and metabolism

Kim Rewitz
University of Copenhagen
Nov 21, 2022

Gut-derived signals regulate metabolism, appetite, and behaviors important for mental health. We have performed a large-scale multidimensional screen to identify gut hormones and nutrient-sensing mechanisms in the intestine that regulate metabolism and behavior in the fruit fly Drosophila. We identified several gut hormones that affect fecundity, stress responses, metabolism, feeding, and sleep behaviors, many of which seem to act sex-specifically. We show that in response to nutrient intake, the enteroendocrine cells (EECs) of the adult Drosophila midgut release hormones that act via inter-organ relays to coordinate metabolism and feeding decisions. These findings suggest that crosstalk between the gut and other tissues regulates food choice according to metabolic needs, providing insight into how that intestine processes nutritional inputs and into the gut-derived signals that relay information regulating nutrient-specific hungers to maintain metabolic homeostasis.

SeminarNeuroscience

Central representations of protein availability regulating appetite and body weight control

Clemence Blouet
Wellcome-MRC Institute of Metabolic Science, University of Cambridge
Jun 13, 2021

Dietary protein quantity and quality greatly impact metabolic health via evolutionary-conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, promote hyperphagia when dietary protein density is low, and conversely produce satiety when dietary protein density is high. Growing evidence support the emerging concept of protein homeostasis in mammals, where protein intake is maintained within a tight range independently of energy intake to reach a target protein intake. The behavioural and neuroendocrine mechanisms underlying these adaptations are unclear and form the focus of our research.

SeminarNeuroscience

Using human pluripotent stem cells to model obesity in vitro

Florian Merkle
University of Cambridge
Apr 14, 2021

Obesity and neurodegeneration lead to millions of premature deaths each year and lack broadly effective treatments. Obesity is largely caused by the abnormal function of cell populations in the hypothalamus that regulate appetite. We have developed methods generate human hypothalamic neurons from hPSCs to study how they respond to nutrients and hormones (e.g. leptin) and how disease-associated mutations alter their function. Since human hypothalamic neurons can be produced in large numbers, are functionally responsive, have a human genome that can be readily edited, and are in culture environment that can be readily controlled, there is an unprecedented opportunity to study the genetic and environmental factors underlying obesity. In addition, we are fascinated by the fact that mid-life obesity is a risk factor for dementia later in life, and caloric restriction, exercise, and certain anti-obesity drugs are neuroprotective, suggesting that there are shared mechanisms between obesity and neurodegeneration. Studies of HPSC-derived hypothalamic neurons may help bridge the mechanistic gulf between human genetic data and organismic phenotypes, revealing new therapeutic targets. ​