← Back

Biophysical Model

Topic spotlight
TopicWorld Wide

biophysical model

Discover seminars, jobs, and research tagged with biophysical model across World Wide.
8 curated items5 Seminars3 ePosters
Updated over 2 years ago
8 items · biophysical model
8 results
SeminarNeuroscience

Learning to Express Reward Prediction Error-like Dopaminergic Activity Requires Plastic Representations of Time

Harel Shouval
The University of Texas at Houston
Jun 13, 2023

The dominant theoretical framework to account for reinforcement learning in the brain is temporal difference (TD) reinforcement learning. The TD framework predicts that some neuronal elements should represent the reward prediction error (RPE), which means they signal the difference between the expected future rewards and the actual rewards. The prominence of the TD theory arises from the observation that firing properties of dopaminergic neurons in the ventral tegmental area appear similar to those of RPE model-neurons in TD learning. Previous implementations of TD learning assume a fixed temporal basis for each stimulus that might eventually predict a reward. Here we show that such a fixed temporal basis is implausible and that certain predictions of TD learning are inconsistent with experiments. We propose instead an alternative theoretical framework, coined FLEX (Flexibly Learned Errors in Expected Reward). In FLEX, feature specific representations of time are learned, allowing for neural representations of stimuli to adjust their timing and relation to rewards in an online manner. In FLEX dopamine acts as an instructive signal which helps build temporal models of the environment. FLEX is a general theoretical framework that has many possible biophysical implementations. In order to show that FLEX is a feasible approach, we present a specific biophysically plausible model which implements the principles of FLEX. We show that this implementation can account for various reinforcement learning paradigms, and that its results and predictions are consistent with a preponderance of both existing and reanalyzed experimental data.

SeminarNeuroscienceRecording

Nonlinear neural network dynamics accounts for human confidence in a sequence of perceptual decisions

Kevin Berlemont
Wang Lab, NYU Center for Neural Science
Sep 20, 2022

Electrophysiological recordings during perceptual decision tasks in monkeys suggest that the degree of confidence in a decision is based on a simple neural signal produced by the neural decision process. Attractor neural networks provide an appropriate biophysical modeling framework, and account for the experimental results very well. However, it remains unclear whether attractor neural networks can account for confidence reports in humans. We present the results from an experiment in which participants are asked to perform an orientation discrimination task, followed by a confidence judgment. Here we show that an attractor neural network model quantitatively reproduces, for each participant, the relations between accuracy, response times and confidence. We show that the attractor neural network also accounts for confidence-specific sequential effects observed in the experiment (participants are faster on trials following high confidence trials), as well as non confidence-specific sequential effects. Remarkably, this is obtained as an inevitable outcome of the network dynamics, without any feedback specific to the previous decision (that would result in, e.g., a change in the model parameters before the onset of the next trial). Our results thus suggest that a metacognitive process such as confidence in one’s decision is linked to the intrinsically nonlinear dynamics of the decision-making neural network.

SeminarNeuroscience

Multiscale modeling of brain states, from spiking networks to the whole brain

Alain Destexhe
Centre National de la Recherche Scientifique and Paris-Saclay University
Apr 5, 2022

Modeling brain mechanisms is often confined to a given scale, such as single-cell models, network models or whole-brain models, and it is often difficult to relate these models. Here, we show an approach to build models across scales, starting from the level of circuits to the whole brain. The key is the design of accurate population models derived from biophysical models of networks of excitatory and inhibitory neurons, using mean-field techniques. Such population models can be later integrated as units in large-scale networks defining entire brain areas or the whole brain. We illustrate this approach by the simulation of asynchronous and slow-wave states, from circuits to the whole brain. At the mesoscale (millimeters), these models account for travelling activity waves in cortex, and at the macroscale (centimeters), the models reproduce the synchrony of slow waves and their responsiveness to external stimuli. This approach can also be used to evaluate the impact of sub-cellular parameters, such as receptor types or membrane conductances, on the emergent behavior at the whole-brain level. This is illustrated with simulations of the effect of anesthetics. The program codes are open source and run in open-access platforms (such as EBRAINS).

SeminarNeuroscience

Fragility of the human connectome across the lifespan

Leonardo Gollo and James Pang
Monash Biomedical Imaging
May 12, 2021

The human brain network architecture can reveal crucial aspects of brain function and dysfunction. The topology of this network (known as the connectome) is shaped by a trade-off between wiring cost and network efficiency, and it has highly connected hub regions playing a prominent role in many brain disorders. By studying a landscape of plausible brain networks that preserve the wiring cost, fragile and resilient hubs can be identified. In this webinar, Dr Leonardo Gollo and Dr James Pang from Monash University will discuss this approach across the lifespan and some of its implications for neurodevelopmental and neurodegenerative diseases. Dr Leonardo Gollo is a Senior Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. He holds an ARC Future Fellowship and his research interests include brain modelling, systems neuroscience, and connectomics. Dr James Pang is a Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. His research interests are on combining neuroimaging and biophysical modelling to better understand the mechanisms of brain function in health and disease.

SeminarNeuroscience

Towards multipurpose biophysics-based mathematical models of cortical circuits

Gaute Einevoll
Norwegian University of Life Sciences
Oct 13, 2020

Starting with the work of Hodgkin and Huxley in the 1950s, we now have a fairly good understanding of how the spiking activity of neurons can be modelled mathematically. For cortical circuits the understanding is much more limited. Most network studies have considered stylized models with a single or a handful of neuronal populations consisting of identical neurons with statistically identical connection properties. However, real cortical networks have heterogeneous neural populations and much more structured synaptic connections. Unlike typical simplified cortical network models, real networks are also “multipurpose” in that they perform multiple functions. Historically the lack of computational resources has hampered the mathematical exploration of cortical networks. With the advent of modern supercomputers, however, simulations of networks comprising hundreds of thousands biologically detailed neurons are becoming feasible (Einevoll et al, Neuron, 2019). Further, a large-scale biologically network model of the mouse primary visual cortex comprising 230.000 neurons has recently been developed at the Allen Institute for Brain Science (Billeh et al, Neuron, 2020). Using this model as a starting point, I will discuss how we can move towards multipurpose models that incorporate the true biological complexity of cortical circuits and faithfully reproduce multiple experimental observables such as spiking activity, local field potentials or two-photon calcium imaging signals. Further, I will discuss how such validated comprehensive network models can be used to gain insights into the functioning of cortical circuits.

ePoster

The thermal adjustment used in neuronal biophysical models is wrong: Here is how to fix it

Bahram Pahlavan, Nicolas Buitrago, Fidel Santamaria

COSYNE 2023

ePoster

Controlling morpho-electrophysiological variability of neurons with detailed biophysical models

Alexis Arnaudon, Maria Reva, Mickael Zbili, Henry Markarm, Werner Van Geit, Lida Kanari

FENS Forum 2024

ePoster

Signal integration and competition in a biophysical model of the substantia nigra pars reticulata

William Scott Thompson, J. J. Johannes Hjorth, Alex Kozlov, Gilad Silberberg, Jeanette Hellgren Kotaleski, Sten Grillner

FENS Forum 2024