Brain Modeling
brain modeling
Modelling the fruit fly brain and body
Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.
Virtual Brain Twins for Brain Medicine and Epilepsy
Over the past decade we have demonstrated that the fusion of subject-specific structural information of the human brain with mathematical dynamic models allows building biologically realistic brain network models, which have a predictive value, beyond the explanatory power of each approach independently. The network nodes hold neural population models, which are derived using mean field techniques from statistical physics expressing ensemble activity via collective variables. Our hybrid approach fuses data-driven with forward-modeling-based techniques and has been successfully applied to explain healthy brain function and clinical translation including aging, stroke and epilepsy. Here we illustrate the workflow along the example of epilepsy: we reconstruct personalized connectivity matrices of human epileptic patients using Diffusion Tensor weighted Imaging (DTI). Subsets of brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other healthy brain regions and propagate activity through large brain networks. The identification of the EZ is crucial for the success of neurosurgery and presents one of the historically difficult questions in clinical neuroscience. The application of latest techniques in Bayesian inference and model inversion, in particular Hamiltonian Monte Carlo, allows the estimation of the EZ, including estimates of confidence and diagnostics of performance of the inference. The example of epilepsy nicely underwrites the predictive value of personalized large-scale brain network models. The workflow of end-to-end modeling is an integral part of the European neuroinformatics platform EBRAINS and enables neuroscientists worldwide to build and estimate personalized virtual brains.
Evolving Neural Networks
Evolution has shaped neural circuits in a very specific manner, slowly and aimlessly incorporating computational innovations that increased the chances to survive and reproduce of the newly born species. The discoveries done by the Evolutionary Developmental (Evo-Devo) biology field during the last decades have been crucial for our understanding of the gradual emergence of such innovations. In turn, Computational Neuroscience practitioners modeling the brain are becoming increasingly aware of the need to build models that incorporate these innovations to replicate the computational strategies used by the brain to solve a given task. The goal of this workshop is to bring together experts from Systems and Computational Neuroscience, Machine Learning and the Evo-Devo field to discuss if and how knowing the evolutionary history of neural circuits can help us understand the way the brain works, as well as the relative importance of learned VS innate neural mechanisms.
Fragility of the human connectome across the lifespan
The human brain network architecture can reveal crucial aspects of brain function and dysfunction. The topology of this network (known as the connectome) is shaped by a trade-off between wiring cost and network efficiency, and it has highly connected hub regions playing a prominent role in many brain disorders. By studying a landscape of plausible brain networks that preserve the wiring cost, fragile and resilient hubs can be identified. In this webinar, Dr Leonardo Gollo and Dr James Pang from Monash University will discuss this approach across the lifespan and some of its implications for neurodevelopmental and neurodegenerative diseases. Dr Leonardo Gollo is a Senior Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. He holds an ARC Future Fellowship and his research interests include brain modelling, systems neuroscience, and connectomics. Dr James Pang is a Research Fellow at the Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University. His research interests are on combining neuroimaging and biophysical modelling to better understand the mechanisms of brain function in health and disease.
Dr Lindsay reads from "Models of the Mind : How Physics, Engineering and Mathematics Shaped Our Understanding of the Brain" 📖
Though the term has many definitions, computational neuroscience is mainly about applying mathematics to the study of the brain. The brain—a jumble of all different kinds of neurons interconnected in countless ways that somehow produce consciousness—has been described as “the most complex object in the known universe”. Physicists for centuries have turned to mathematics to properly explain some of the most seemingly simple processes in the universe—how objects fall, how water flows, how the planets move. Equations have proved crucial in these endeavors because they capture relationships and make precise predictions possible. How could we expect to understand the most complex object in the universe without turning to mathematics? — The answer is we can’t, and that is why I wrote this book. While I’ve been studying and working in the field for over a decade, most people I encounter have no idea what “computational neuroscience” is or that it even exists. Yet a desire to understand how the brain works is a common and very human interest. I wrote this book to let people in on the ways in which the brain will ultimately be understood: through mathematical and computational theories. — At the same time, I know that both mathematics and brain science are on their own intimidating topics to the average reader and may seem downright prohibitory when put together. That is why I’ve avoided (many) equations in the book and focused instead on the driving reasons why scientists have turned to mathematical modeling, what these models have taught us about the brain, and how some surprising interactions between biologists, physicists, mathematicians, and engineers over centuries have laid the groundwork for the future of neuroscience. — Each chapter of Models of the Mind covers a separate topic in neuroscience, starting from individual neurons themselves and building up to the different populations of neurons and brain regions that support memory, vision, movement and more. These chapters document the history of how mathematics has woven its way into biology and the exciting advances this collaboration has in store.