Cerebellar Circuit
cerebellar circuit
Understanding the complex behaviors of the ‘simple’ cerebellar circuit
Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.
Synchrony and Synaptic Signaling in Cerebellar Circuits
The cerebellum permits a wide range of behaviors that involve sensorimotor integration. We have been investigating how specific cellular and synaptic specializations of cerebellar neurons measured in vitro, give rise to circuit activity in vivo. We have investigated these issues by studying Purkinje neurons as well as the large neurons of the mouse cerebellar nuclei, which form the major excitatory premotor projection from the cerebellum. Large CbN cells have ion channels that favor spontaneous action potential firing and GABAA receptors that generate ultra-fast inhibitory synaptic currents, raising the possibility that these biophysical attributes may permit CbN cells to respond differently to the degree of temporal coherence of their Purkinje cell inputs. In vivo, self-initiated motor programs associated with whisking correlates with asynchronous changes in Purkinje cell simple spiking that are asynchronous across the population. The resulting inhibition converges with mossy fiber excitation to yield little change in CbN cell firing, such that cerebellar output is low or cancelled. In contrast, externally applied sensory stimuli elicits a transient, synchronous inhibition of Purkinje cell simple spiking. During the resulting strong disinhibition of CbN cells, sensory-induced excitation from mossy fibers effectively drives cerebellar outputs that increase the magnitude of reflexive whisking. Purkinje cell synchrony, therefore, may be a key variable contributing to the “positive effort” hypothesized by David Marr in 1969 to be necessary for cerebellar control of movement.
Sparse expansion in cerebellum favours learning speed and performance in the context of motor control
The cerebellum contains more than half of the brain’s neurons and it is essential for motor control. Its neural circuits have a distinctive architecture comprised of a large, sparse expansion from the input mossy fibres to the granule cell layer. For years, theories of how cerebellar architectural features relate to cerebellar function have been formulated. It has been shown that some of these features can facilitate pattern separation. However, these theories don’t consider the need for it to learn fast in order to control smooth and accurate movements. Here, we confront this gap. This talk will show that the expansion to the granule cell layer in the cerebellar cortex improves learning speed and performance in the context of motor control by considering a cerebellar-like network learning an internal model of a motor apparatus online. By expressing the general form of the learning rate for such a system, this talk will provide a calculation of how increasing the number of granule cells diminishes the effect of noise and increases the learning speed. The researchers propose that the particular architecture of cerebellar circuits modifies the geometry of the error function in a favourable way for learning faster. Their results illuminate a new link between cerebellar structure and function.
Recurrent problems in spinal-cord and cerebellar circuits
One of the best established recurrent inhibitory pathways is the recurrent inhibition of mammalian motoneurons through Renshaw cells. Golgi cells form an inhibitory feedback circuit in the granular layer of cerebellum. Feedback inhibitory pathways are long established “textbook” elements of neural circuitry, but in both cases their functional role has not been well established. Here I will present some new observations on the function of recurrent inhibition in the spinal-cord, supporting the idea that this connection frequency tunes transmission of inputs through motoneurons. Secondly, I will discuss evidence that the function of Golgi cells is much more complex than classical studies based on circuit connectivity suggest.
Exploring signal processing compartmentalization in the cerebellar circuit using a high-density multielectrode array
FENS Forum 2024
Interactions between sensory and motor systems: Corticocerebellar circuits and task engagement
FENS Forum 2024
Thalamic interaction of basal ganglia and cerebellar circuits during motor learning
FENS Forum 2024