← Back

Cnp Seminars

Topic spotlight
TopicWorld Wide

CNP SEMINARS

Discover seminars, jobs, and research tagged with CNP SEMINARS across World Wide.
2 curated items2 Seminars
Updated over 3 years ago
2 items · CNP SEMINARS
2 results
SeminarNeuroscience

Astroglial modulation of the antidepressant action of deep brain and bright light stimulation

Nasser Haddjeri
Stem Cell And Brain Research Institute, INSERM 1208, Bron, France
Apr 7, 2022

Even if major depression is now the most common of psychiatric disorders, successful antidepressant treatments are still difficult to achieve. Therefore, a better understanding of the mechanisms of action of current antidepressant treatments is needed to ultimately identify new targets and enhance beneficial effects. Given the intimate relationships between astrocytes and neurons at synapses and the ability of astrocytes to "sense" neuronal communication and release gliotransmitters, an attractive hypothesis is emerging stating that the effects of antidepressants on brain function could be, at least in part, modulated by direct influences of astrocytes on neuronal networks. We will present two preclinical studies revealing a permissive role of glia in the antidepressant response: i) Control of the antidepressant-like effects of rat prefrontal cortex Deep Brain Stimulation (DBS) by astroglia, ii) Modulation of antidepressant efficacy of Bright Light Stimulation (BLS) by lateral habenula astroglia. Therefore, it is proposed that an unaltered neuronal-glial system constitutes a major prerequisite to optimize antidepressant efficacy of DBS or BLS. Collectively, these results pave also the way to the development of safer and more effective antidepressant strategies.

SeminarNeuroscience

Neuronal plasticity and neurotrophin signaling as the common mechanism for antidepressant effect

Eero Castrén
Neuroscience Center, University of Helsinki, Finland
Mar 17, 2022

Neuronal plasticity has for a long time been considered important for the recovery from depression and for the antidepressant drug action, but how the drug action is translated to plasticity has remained unclear. Brain-derived neurotrophic factor (BDNF) and its receptor TRKB are critical regulators of neuronal plasticity and have been implicated in the antidepressant action. We have recently found that many, if not all, different antidepressants, including serotonin selective SSRIs, tricyclic as well as fast-acting ketamine, directly bind to TRKB, thereby promoting TRKB translocation to synaptic membranes, which increases BDNF signaling. We have previously shown that antidepressant treatment induces a juvenile-like state of activity in the cortex that facilitates beneficial rewiring of abnormal networks. We recently showed that activation of TRKB receptors in parvalbumin-containing interneurons orchestrates cortical activation states and is both necessary and sufficient for the antidepressantinduced cortical plasticity. Our findings open a new framework how the action of antidepressants act: rather than regulating brain monoamine concentrations, antidepressants directly bind to TRKB and allosterically promote BDNF signaling, thereby inducing a state of plasticity that allows re-wiring of abnormal networks for better functionality.