Coactivity
coactivity
Developmentally structured coactivity in the hippocampal trisynaptic loop
The hippocampus is a key player in learning and memory. Research into this brain structure has long emphasized its plasticity and flexibility, though recent reports have come to appreciate its remarkably stable firing patterns. How novel information incorporates itself into networks that maintain their ongoing dynamics remains an open question, largely due to a lack of experimental access points into network stability. Development may provide one such access point. To explore this hypothesis, we birthdated CA1 pyramidal neurons using in-utero electroporation and examined their functional features in freely moving, adult mice. We show that CA1 pyramidal neurons of the same embryonic birthdate exhibit prominent cofiring across different brain states, including behavior in the form of overlapping place fields. Spatial representations remapped across different environments in a manner that preserves the biased correlation patterns between same birthdate neurons. These features of CA1 activity could partially be explained by structured connectivity between pyramidal cells and local interneurons. These observations suggest the existence of developmentally installed circuit motifs that impose powerful constraints on the statistics of hippocampal output.
Developmentally structured coactivity and plasticity in the hippocampal trisynaptic loop
COSYNE 2023
Organizing the coactivity structure of the hippocampus from robust to flexible memory
FENS Forum 2024