← Back

Drift Diffusion Model

Topic spotlight
TopicWorld Wide

drift diffusion model

Discover seminars, jobs, and research tagged with drift diffusion model across World Wide.
2 curated items2 Seminars
Updated about 4 years ago
2 items · drift diffusion model
2 results
SeminarNeuroscienceRecording

NMC4 Short Talk: Transient neuronal suppression for exploitation of new sensory evidence

Maxwell Shinn
University College London
Dec 1, 2021

Decision-making in noisy environments with constant sensory evidence involves integrating sequentially-sampled evidence, a strategy formalized by diffusion models which is supported by decades behavioral and neural findings. By contrast, it is unknown whether this strategy is also used during decision-making when the underlying sensory evidence is expected to change. Here, we trained monkeys to identify the dominant color of a dynamically refreshed checkerboard pattern that doesn't become informative until after a variable delay. Animals' behavioral responses were briefly suppressed after an abrupt change in evidence, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to the dip frequently observed after stimulus onset. Generalized drift-diffusion models revealed that behavior and neural activity were consistent with a brief suppression of motor output without a change in evidence accumulation itself, in contrast to the popular belief that evidence accumulation is paused or reset. These results suggest that a brief interruption in motor preparation is an important strategy for dealing with changing evidence during perceptual decision making.

SeminarNeuroscience

Bayesian distributional regression models for cognitive science

Paul Bürkner
University of Stuttgart
May 25, 2021

The assumed data generating models (response distributions) of experimental or observational data in cognitive science have become increasingly complex over the past decades. This trend follows a revolution in model estimation methods and a drastic increase in computing power available to researchers. Today, higher-level cognitive functions can well be captured by and understood through computational cognitive models, a common example being drift diffusion models for decision processes. Such models are often expressed as the combination of two modeling layers. The first layer is the response distribution with corresponding distributional parameters tailored to the cognitive process under investigation. The second layer are latent models of the distributional parameters that capture how those parameters vary as a function of design, stimulus, or person characteristics, often in an additive manner. Such cognitive models can thus be understood as special cases of distributional regression models where multiple distributional parameters, rather than just a single centrality parameter, are predicted by additive models. Because of their complexity, distributional models are quite complicated to estimate, but recent advances in Bayesian estimation methods and corresponding software make them increasingly more feasible. In this talk, I will speak about the specification, estimation, and post-processing of Bayesian distributional regression models and how they can help to better understand cognitive processes.