Ethology
ethology
Kevin Bolding
We are recruiting lab personnel. If systems neuroscience at the intersection of olfaction and memory excites you, now is an excellent time to get in touch. Our goal is to discover fundamental rules and mechanisms that govern information storage and retrieval in neural systems. Our primary focus will be establishing the changes in neural circuit and population dynamics that correspond to odor recognition memory. To bring our understanding of this process to a new level of rigor we will apply quantitative statistical approaches to relate behavioral signatures of odor recognition to activity and plasticity in olfactory circuits. We will use in vivo electrophysiology and calcium imaging to capture the activity of large neural populations during olfactory experience, and we will apply cell-type specific perturbations of activity and plasticity to piece apart how specific circuit connections contribute.
Started at 09 .15 - A WHOLE DAY symposium celebrating the work of Mike Land
Note: British 16.15 is the finishing time
Under the sea: Challenges and Solutions in Aquatic Foraging
Crescent Loom: a flexible neurophysiology online simulation for teaching neuroethology
SimBA for Behavioral Neuroscientists
Several excellent computational frameworks exist that enable high-throughput and consistent tracking of freely moving unmarked animals. SimBA introduce and distribute a plug-and play pipeline that enables users to use these pose-estimation approaches in combination with behavioral annotation for the generation of supervised machine-learning behavioral predictive classifiers. SimBA was developed for the analysis of complex social behaviors, but includes the flexibility for users to generate predictive classifiers across other behavioral modalities with minimal effort and no specialized computational background. SimBA has a variety of extended functions for large scale batch video pre-processing, generating descriptive statistics from movement features, and interactive modules for user-defined regions of interest and visualizing classification probabilities and movement patterns.
Molecularly distinct wiring specificity in the mouse olfactory bulb
Vision for escape and pursuit
We want to understand how the visual system detects and tracks salient stimuli in the environment to initiate and guide specific behaviors (i.e., visual neuroethology). Predator avoidance and prey capture are central selection pressures of animal evolution. Mice use vision to detect aerial predators and hunt insects. I will discuss studies from my group that identify specific circuits and pathways in the early visual system (i.e., the retina and its subcortical targets) mediating predator avoidance and prey capture in mice. Our results highlight the importance of subcellular visual processing in the retina and the alignment of viewing strategies with region- and cell-type-specific retinal ganglion cell projection patterns to the brain.
Neuroscience in the mud: interplay between lab and field research for understanding animal behavior
Investigations of the neurophysiological processes underlying animal behaviors are almost exclusively done inside the laboratory, typically using few animal models born and reared under artificially stabilized conditions. Yet, animals living in the wild have to cope with much complex and variable environments. Thus, while the laboratory provides the technical possibilities for physiological research, the field offers a more realistic perspective about the animal´s behavioral abilities. We study neural circuits underlying the visually guided prey and predator behaviors in a semiterrestrial crab. By combining lab and field experiments we have, for example, found that the level of predation risk experienced by the animals in the wild affects the responsiveness of identified neurons involved in the animal escape response. Using this and other results from my lab I will illustrate and discuss the importance of complementing lab with field studies in wild animals for understanding the neural mechanisms subserving behavior.
Dragons, Sleep, and the Claustrum
The mammalian claustrum, by virtue of its dense interconnectivity with cortex and other brain structures, has been hypothesized to mediate functions ranging from decision making to consciousness. I will be presenting experimental evidence for the existence of a claustrum in reptiles, its role in generating brain dynamics characteristic of sleep, and discuss our neuroetholgical approach towards understanding fundamental aspects of sleep and claustrum function.