Event
event representation
Learning and updating structured knowledge
During our everyday lives, much of what we experience is familiar and predictable. We typically follow the same morning routine, take the same route to work, and encounter the same colleagues. However, every once in a while, we encounter a surprising event that violates our expectations. When we encounter such violations of our expectations, it is adaptive to update our internal model of the world in order to make better predictions in the future. The hippocampus is thought to support both the learning of the predictable structure of our environment, as well as the detection and encoding of violations. However, the hippocampus is a complex and heterogeneous structure, composed of different subfields that are thought to subserve different functions. As such, it is not yet known how the hippocampus accomplishes the learning and updating of structured knowledge. Using behavioral methods and high-resolution fMRI, I'll show that during learning of repeated and predicted events, hippocampal subfields differentially integrate and separate event representations, thus learning the structure of ongoing experience. I then move on to discuss how when events violate our predictions, there is a shift in communication between hippocampal subfields, potentially allowing for efficient encoding of the novel and surprising information. If time permits, I'll present an additional behavioral study showing that violations of predictions promote detailed memories. Together, these studies advance our understanding of how we adaptively learn and update our knowledge.
How development sculpts memory circuits
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this talk, I will focus on the development of hippocampal circuits and the self-organized dynamics embedded in them since the latter critically support the role of the hippocampus in memory. I will discuss evidence that adult hippocampal cells and circuits are remarkably sculpted by development, as early as embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, I will present data on the emergence of recurrent connectivity and self-organized dynamics in hippocampal circuits and outline the critical turn points and discontinuities in that developmental journey.
Schemas: events, spaces, semantics, and development
Understanding and remembering realistic experiences in our everyday lives requires activating many kinds of structured knowledge about the world, including spatial maps, temporal event scripts, and semantic relationships. My recent projects have explored the ways in which we build up this schematic knowledge (during a single experiment and across developmental timescales) and can strategically deploy them to construct event representations that we can store in memory or use to make predictions. I will describe my lab's ongoing work developing new experimental and analysis techniques for conducting functional MRI experiments using narratives, movies, poetry, virtual reality, and "memory experts" to study complex naturalistic schemas.