← Back

Genetics

Topic spotlight
TopicWorld Wide

genetics

Discover seminars, jobs, and research tagged with genetics across World Wide.
79 curated items60 Seminars11 ePosters8 Positions
Updated about 15 hours ago
79 items · genetics
79 results
PositionNeuroscience

SISSA Neuroscience department

International School for Advanced Studies (SISSA)
Trieste, Italy
Dec 5, 2025

The Neuroscience Department of the International School for Advanced Studies (SISSA; https://www.sissa.it/research/neuroscience) invites expressions of interest from scientists from various fields of Neuroscience for multiple tenure-track positions with anticipated start in 2025. Ongoing neuroscience research at SISSA includes cognitive neuroscience, computational and theoretical neuroscience, systems neuroscience, molecular and cellular research as well as genomics and genetics. The Department intends to potentiate its activities in these fields and to strengthen cross-field interactions. Expressions of interest from scientists in any of these fields are welcome. The working and teaching language of SISSA is English. This is an equal opportunity career initiative and we encourage applications from qualified women, racial and ethnic minorities, and persons with disabilities. Candidates should have a PhD in a relevant field and a proven record of research achievements. A clear potential to promote and lead research activities, and a specific interest in training and supervising PhD students is essential. Interested colleagues should present an original and innovative plan for their independent future research. We encourage both proposals within existing fields at SISSA as well as novel ideas outside of those or spanning various topics and methodologies of Neuroscience. SISSA is an international school promoting basic and applied research in Neuroscience, Mathematics and Physics and dedicated to the training of PhD students. Lab space and other resources will be commensurate with the appointment. Shared facilities include cell culture rooms, viral vector facilities, confocal microscopes, animal facilities, molecular and biochemical facilities, human cognition labs with EEG, TMS, and eye tracking systems, mechatronics workshop, and computing facilities. Agreements with national and international MRI scanning facilities are also in place. SISSA encourages fruitful exchanges between neuroscientists and other researchers including data scientists, physicists and mathematicians. Interested colleagues are invited to send a single pdf file including a full CV, a brief description of past and future research interests (up to 1,000 words), and the names of three referees to neuro.search@sissa.it. Selected candidates will be invited for an online or in-person seminar and 1- on-1 meetings in summer/autumn 2024. Deadline: A first evaluation round will consider all applications submitted before 15 May 2024. Later applications might be considered if no suitable candidates have been identified yet.

PositionNeuroscience

Prof Paul Shaw

Washington University in St Louis School of Medicine
Saint Louis Missouri
Dec 5, 2025

A postdoctoral position is available immediately in the lab of Dr. Paul Shaw in the Neuroscience Department at Washington University School of Medicine in St. Louis to study the molecular and cellular bases for sleep regulation, plasticity and memory consolidation in the fruit fly Drosophila melanogaster. Successful candidates will have the opportunity to learn and apply molecular, genetic, physiological, and behavioral tools to study mechanisms by which sleep might influence plasticity. Qualified applicants are expected to hold a recent doctoral degree in the biological sciences, or in related disciplines. Prior experience in working with flies and broad understanding of genetic principles are highly preferred. Highly competitive salary and benefits are available and will commensurate with experience. Washington University School of Medicine offers a highly collaborative, top-notch training and research environment in neuroscience and the biomedical sciences. Wash U’s community is a very active and highly regarded neuroscience community, and is an excellent training environment for postdoctoral fellows. Interested candidates should email their curriculum vitae, a letter of interest outlining experience and research goals, and the names and contact information of at least three references to shawp@wustl.edu EOE Washington University is an Equal Opportunity Employer. All qualified applicants will receive consideration for employment without regard to race, color, religion, age, sex, sexual orientation, gender identity or expression, national origin, genetic information, disability, or protected veteran status.

Position

Dr. Sonja Vernes

St. Andrews University
St.Andrews, UK
Dec 5, 2025

A PhD student is sought to investigate the molecular and genetic bases of vocal learning using a range of cutting edge techniques and model systems. The project will ask how this complex behaviour can be encoded at molecular level by investigating genetic mechanisms and genomic factors. The student will receive comprehensive training to use diverse approaches including molecular, cellular and functional assays, design and testing of genetic engineering methods (CRISPR, shRNA etc), viral packaging, transcriptomics, proteomics and in silico genomic approaches. The student will have the opportunity to work with our extraordinary model system – bats. We have been pioneering the study of bats as neurogenetic models and established them to explore the molecular mechanisms underlying vocal learning and to understand the biology and evolution of speech and language. We have recently generated the first successful genetically engineered bats (transient transgenics) and the student will apply the methods developed in the group, as well as develop new transgenic bat models as part of their project. Working with live animals is not a requirement, as the project is predominantly molecular lab based, but there will be the opportunity to work with the animals if it is desired by the student. This model will shed light onto the molecular encoding of mammalian vocal learning and represent a sophisticated model to provide insight into the mechanisms underlying childhood disorders of language. We are a highly interdisciplinary and collaborative lab and the PhD student will work closely with highly supportive lab members and our rich network of interdisciplinary collaborators, many of whom are world leaders in the field. The student will also be encouraged to present their findings at international conferences (in person or online) and may visit the lab(s) of international collaborators for research stays and knowledge exchange. The PI leads an international genomics consortium, www.bat1k, that is a vibrant community of more than 350 members across >50 countries, which provides many opportunities for interaction, training, knowledge exchange and future career opportunities. This project will provide an excellent opportunity for a student with a keen interest in molecular biology to train in both established as well as new cutting-edge methods applicable to most model systems. Training and personal development will be a key aspect of the PhD and we will work with the student to develop a training plan that suits their needs and personal goals. This will include training in scientific methods, but also in personal and professional development (eg. project design and management, communication skills, writing skills, etc) and will be bolstered by the excellent training available from the transferable skills programme at the University of St Andrews. Many of our lab members are also involved in outreach initiatives and we support students to become involved in local, national or international initiatives according to their interests. The project will be hosted in the School of Biology at the University of St Andrews and benefit from interactions across its three internationally renowned research centres; The Scottish Oceans Institute (SOI), Biomedical Sciences Research Complex (BSRC) and Centre for Biological Diversity (CBD). The incredibly rich research environment and excellent facilities present in the School have led to the School of Biology continuing to be scored by the National Student Survey as one of the top biology schools in the UK. In the student satisfaction led survey, The Times and Sunday Times Good University Guide 2022, the University of St Andrews was ranked as the top UK university, evidence of the rich student environment and social and collegiate atmosphere that leads to a highly positive experience for students at St Andrews.

Position

Prof. Simon Fisher

Max Planck Institute for Psycholinguistics
Nijmegen, Netherlands
Dec 5, 2025

Through whole genome DNA sequencing, we have identified rare gene disruptions that cause speech and language impairments in human neurodevelopmental disorders. The successful candidate will lead specific projects within an ongoing research programme that investigates the neurobiological consequences of such gene disruptions (in FOXP1/2/4, CHD3, SETBP1 among other genes). This programme adopts the latest human cell-culture techniques (stem-cell derived 2D and 3D neuronal models), CRISPR/Cas-based gene editing, single-cell RNA sequencing, and other state-of-the-art methods.

Position

Dr. Katie Kindt

National Institutes of Health
Bethesda, MD, USA
Dec 5, 2025

A staff scientist position is available within the Section on Sensory Cell Development and Function at the National Institute on Deafness and Other Communication Disorders (NIDCD), at the National Institutes of Health (NIH). We are located in the multidisciplinary Neuroscience Research Center (Building 35A) in Bethesda, Maryland just outside of Washington D.C. Our group utilizes the zebrafish system to study hair cells, the specialized mechanoreceptors that are required to reliably transmit auditory and vestibular information to the brain. Specifically, we use this in vivo model to investigate the function and assembly of the hair cell system. Our work uses this relevant model by combining powerful genetics, functional and time-lapse imaging, electrophysiology, and behavioral analyses to comprehensively dissect the molecular and functional requirements underlying the assembly and function of hair cell systems in vivo. The main questions we are currently asking include: 1) how do collections of sensory cells, synapses, and neurons coordinate to encode sensory information; 2) how does sensory activity impact circuit assembly, function and health; and 3) what molecules are required to set up sensory function and synapse specificity?

SeminarNeuroscience

Biomolecular condensates as drivers of neuroinflammation

Steven Boeynaems
Department of Molecular and Human Genetics, Baylor College of Medicine Duncan Neurological Research Institute, Texas Children's Hospital, USA
Nov 3, 2025
SeminarNeuroscience

Unpacking the role of the medial septum in spatial coding in the medial entorhinal cortex

Jennifer Robinson
McGill University
Sep 10, 2025
SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 12, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

Expanding mechanisms and therapeutic targets for neurodegenerative disease

Aaron D. Gitler
Department of Genetics, Stanford University
Jun 4, 2025

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.

SeminarNeuroscienceRecording

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala

Kenneth Hayworth
Carboncopies Foundation & BPF Aspirational Neuroscience
Apr 21, 2025

Fear learning induces synaptic potentiation between engram neurons in the rat lateral amygdala. This study by Marios Abatis et al. demonstrates how fear conditioning strengthens synaptic connections between engram cells in the lateral amygdala, revealed through optogenetic identification of neuronal ensembles and electrophysiological measurements. The work provides crucial insights into memory formation mechanisms at the synaptic level, with implications for understanding anxiety disorders and developing targeted interventions. Presented by Dr. Kenneth Hayworth, this journal club will explore the paper's methodology linking engram cell reactivation with synaptic plasticity measurements, and discuss implications for memory decoding research.

SeminarNeuroscience

Mouse Motor Cortex Circuits and Roles in Oromanual Behavior

Gordon Shepherd
Northwestern University
Jan 13, 2025

I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In one line of investigation, we take a bottom-up, cellularly oriented approach and use optogenetics, electrophysiology, and related slice-based methods to dissect cell-type-specific circuits of corticospinal and other neurons in forelimb motor cortex. In another, we take a top-down ethologically oriented approach and analyze the kinematics and cortical correlates of “oromanual” dexterity as mice handle food. I'll discuss recent progress on both fronts.

SeminarNeuroscience

Genetic and epigenetic underpinnings of neurodegenerative disorders

Rudolf Jaenisch
MIT Department of Biology
Dec 10, 2024

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzheimer’s, autism, and cancer. Mechanisms of somatic cell reprogramming to an embryonic pluripotent state are explored, utilizing patient-specific pluripotent cells to model and analyze neurodegenerative diseases.

SeminarNeuroscience

Virtual and experimental approaches to the pathogenicity of SynGAP1 missense mutations

Michael Courtney & Pekka Postila
University of Turku
Nov 20, 2024
SeminarNeuroscience

Targeting gamma oscillations to improve cognition

Vikaas Sohal, MD, PhD
UCSF
Oct 30, 2024
SeminarNeuroscience

SYNGAP1 Natural History Study/ Multidisciplinary Clinic at Children’s Hospital Colorado

Megan Abbott, MD
Children's Hospital Colorado
Jul 16, 2024
SeminarNeuroscience

In vivo scalable investigation of gene functions in the brain

Xin Jin
Scripps Research
Jun 25, 2024
SeminarNeuroscience

Beyond the synapse: SYNGAP1 in primary and motile cilia

Helen Willsey, PhD
University of California San Francisco
May 24, 2024
SeminarNeuroscienceRecording

The Roles of Distinct Functions of SynGAP1 in SYNGAP1-Related Disorders

Richard Huganir
Johns Hopkins Medicine
May 14, 2024
SeminarNeuroscienceRecording

Combined electrophysiological and optical recording of multi-scale neural circuit dynamics

Chris Lewis
University of Zurich
Apr 29, 2024

This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.

SeminarNeuroscience

Contrasting developmental principles of human brain development and their relevance to neurodevelopmental disorders

Tom Nowakowski
University of California, San Francisco
Apr 16, 2024
SeminarNeuroscience

Roles of inhibition in stabilizing and shaping the response of cortical networks

Nicolas Brunel
Duke University
Apr 4, 2024

Inhibition has long been thought to stabilize the activity of cortical networks at low rates, and to shape significantly their response to sensory inputs. In this talk, I will describe three recent collaborative projects that shed light on these issues. (1) I will show how optogenetic excitation of inhibition neurons is consistent with cortex being inhibition stabilized even in the absence of sensory inputs, and how this data can constrain the coupling strengths of E-I cortical network models. (2) Recent analysis of the effects of optogenetic excitation of pyramidal cells in V1 of mice and monkeys shows that in some cases this optogenetic input reshuffles the firing rates of neurons of the network, leaving the distribution of rates unaffected. I will show how this surprising effect can be reproduced in sufficiently strongly coupled E-I networks. (3) Another puzzle has been to understand the respective roles of different inhibitory subtypes in network stabilization. Recent data reveal a novel, state dependent, paradoxical effect of weakening AMPAR mediated synaptic currents onto SST cells. Mathematical analysis of a network model with multiple inhibitory cell types shows that this effect tells us in which conditions SST cells are required for network stabilization.

SeminarNeuroscience

Genomic investigation of sex-differential neurodevelopment and risk for autism

Donna Werling
University of Wisconsin-Madison
Jan 30, 2024
SeminarNeuroscience

Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep

Hiroki R. Ueda
Graduate School of Medicine, University of Tokyo
Jan 14, 2024

The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.

SeminarNeuroscience

Effects of Presenilin1 FAD mutants on brain angiogenic functions and neuroprotection in Alzheimer’s Disease

Georgakopoulos Tassos
Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, USA
Nov 14, 2023
SeminarNeuroscience

Consolidation of remote contextual memory in the neocortical memory engram

Jun-Hyeong Cho
Oct 25, 2023

Recent studies identified memory engram neurons, a neuronal population that is recruited by initial learning and is reactivated during memory recall.  Memory engram neurons are connected to one another through memory engram synapses in a distributed network of brain areas.  Our central hypothesis is that an associative memory is encoded and consolidated by selective strengthening of engram synapses.  We are testing this hypothesis, using a combination of engram cell labeling, optogenetic/chemogenetic, electrophysiological, and virus tracing approaches in rodent models of contextual fear conditioning.  In this talk, I will discuss our findings on how synaptic plasticity in memory engram synapses contributes to the acquisition and consolidation of contextual fear memory in a distributed network of the amygdala, hippocampus, and neocortex.

SeminarNeuroscience

The role of CNS microglia in health and disease

Kyrargyri Vassiliki
Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
Oct 24, 2023

Microglia are the resident CNS macrophages of the brain parenchyma. They have many and opposing roles in health and disease, ranging from inflammatory to anti-inflammatory and protective functions, depending on the developmental stage and the disease context. In Multiple Sclerosis, microglia are involved to important hallmarks of the disease, such as inflammation, demyelination, axonal damage and remyelination, however the exact mechanisms controlling their transformation towards a protective or devastating phenotype during the disease progression remains largely unknown until now. We wish to understand how brain microglia respond to demyelinating insults and how their behaviour changes in recovery. To do so we developed a novel histopathological analysis approach in 3D and a cell-based analysis tool that when applied in the cuprizone model of demyelination revealed region- and disease- dependent changes in microglial dynamics in the brain grey matter during demyelination and remyelination. We now use similar approaches with the aim to unravel sensitive changes in microglial dynamics during neuroinflammation in the EAE model. Furthermore, we employ constitutive knockout and tamoxifen-inducible gene-targeting approaches, immunological techniques, genetics and bioinformatics and currently seek to clarify the specific role of the brain resident microglial NF-κB molecular pathway versus other tissue macrophages in EAE.

SeminarNeuroscienceRecording

Rodents to Investigate the Neural Basis of Audiovisual Temporal Processing and Perception

Ashley Schormans
BrainsCAN, Western University, Canada.
Sep 26, 2023

To form a coherent perception of the world around us, we are constantly processing and integrating sensory information from multiple modalities. In fact, when auditory and visual stimuli occur within ~100 ms of each other, individuals tend to perceive the stimuli as a single event, even though they occurred separately. In recent years, our lab, and others, have developed rat models of audiovisual temporal perception using behavioural tasks such as temporal order judgments (TOJs) and synchrony judgments (SJs). While these rodent models demonstrate metrics that are consistent with humans (e.g., perceived simultaneity, temporal acuity), we have sought to confirm whether rodents demonstrate the hallmarks of audiovisual temporal perception, such as predictable shifts in their perception based on experience and sensitivity to alterations in neurochemistry. Ultimately, our findings indicate that rats serve as an excellent model to study the neural mechanisms underlying audiovisual temporal perception, which to date remains relativity unknown. Using our validated translational audiovisual behavioural tasks, in combination with optogenetics, neuropharmacology and in vivo electrophysiology, we aim to uncover the mechanisms by which inhibitory neurotransmission and top-down circuits finely control ones’ perception. This research will significantly advance our understanding of the neuronal circuitry underlying audiovisual temporal perception, and will be the first to establish the role of interneurons in regulating the synchronized neural activity that is thought to contribute to the precise binding of audiovisual stimuli.

SeminarNeuroscience

Quantifying perturbed SynGAP1 function caused by coding mutations

Michael Courtney, PhD
Turku Bioscience
Jun 14, 2023
SeminarNeuroscience

Therapeutic Strategies for Autism: Targeting Three Levels of the Central Dogma of Molecular Biology with a Focus on SYNGAP1

Prof. Lilia Iakoucheva, PhD & Mr. Derek Hong, MS
UCSD School of Medicine
Jun 7, 2023
SeminarNeuroscience

Involvement of the brain endothelium in neurodevelopmental disorders

Baptiste Lacoste, PhD
University of Ottawa
May 17, 2023
SeminarNeuroscience

Catatonia in Neurodevelopmental Conditions

Joshua Ryan Smith
Vanderbilt University Medical Center
May 10, 2023
SeminarNeuroscienceRecording

Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation

Zoe Christenson-Wick
Mount Sinai School of Medicine, NY, USA
May 8, 2023

Zoe has developed an open-source tool PhaSER, which allows her to perform real-time oscillatory phase estimation and apply optogenetic manipulations at precise phases of hippocampal theta during high-density electrophysiological recordings in head-fixed mice while they navigate a virtual environment. The precise timing of single-unit spiking relative to network-wide oscillations (i.e., phase locking) has long been thought to maintain excitatory-inhibitory homeostasis and coordinate cognitive processes, but due to intense experimental demands, the causal influence of this phenomenon has never been determined. Thus, we developed PhaSER (Phase-locked Stimulation to Endogenous Rhythms), a tool which allows the user to explore the temporal relationship between single-unit spiking and ongoing oscillatory activity.

SeminarNeuroscience

Precision Genomics in Neurodevelopmental Disorders

Tychele Turner
Washington University
May 2, 2023
SeminarNeuroscience

Epigenetic rewiring in Schinzel-Giedion syndrome

Alessandro Sessa, PhD
San Raffaele Scientific Institute, Milan (Italy), Stem Cell & Neurogenesis Unit
May 2, 2023

During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.

SeminarNeuroscience

A Data-Driven Approach to Reconstructing Disease Trajectories in SYNGAP1-Related Disorders

Jillian McKee, MD, PhD
UPENN
Apr 26, 2023
SeminarNeuroscience

Expanding the role of MAST kinases in brain development and epilepsy: identification of de novo pathogenic variants in MAST4

Kimberly Aldinger
University of Washington; Seattle Children's Research Institute
Apr 18, 2023
SeminarNeuroscience

Establishment and aging of the neuronal DNA methylation landscape in the hippocampus

Sara Zocher, PhD
German Center for Neurodegenerative Diseases (DZNE), Dresden
Apr 11, 2023

The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.

SeminarNeuroscience

Neural epigenetic mechanisms of early life exercise interventions

Autumn Ivy
University of California Irvine
Mar 28, 2023
SeminarNeuroscience

Hallucinating mice, dopamine and immunity; towards mechanistic treatment targets for psychosis

Katharina Schmack
Francis Crick Institute, London
Mar 22, 2023

Hallucinations are a core symptom of psychotic disorders and have traditionally been difficult to study biologically. We developed a new behavioral computational approach to measure hallucinations-like perception in humans and mice alike. Using targeted neural circuit manipulations, we identified a causal role for striatal dopamine in mediating hallucination-like perception. Building on this, we currently investigate the neural and immunological upstream regulators of these dopaminergic circuits with the goal to identify new biological treatment targets for psychosis

SeminarNeuroscience

Harnessing mRNA metabolism for the development of precision gene therapy

Jeff Coller, PhD
Johns Hopkins Medicine
Mar 15, 2023
SeminarNeuroscience

Linking SYNGAP1 with Human-Specific Mechanisms of Neuronal Development

Pierre Vanderhaeghen, MD, PhD
VIB Center for Brain & Disease Research
Mar 8, 2023
SeminarNeuroscienceRecording

Prox2+ and Runx3+ vagal sensory neurons regulate esophageal motility

Elijah Lowenstein
Birchmeier lab, Max Delbrück Center
Feb 28, 2023

Sensory neurons of the vagus nerve monitor distention and stretch in the gastrointestinal tract. We used genetically guided anatomical tracing, optogenetics and electrophysiology to identify and characterize two vagal sensory neuronal subtypes expressing Prox2 and Runx3. We show that these neuronal subtypes innervate the esophagus where they display regionalized innervation patterns. Electrophysiological analyses showed that they are both low threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis and swallowing in freely behaving animals. Our work reveals the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.

SeminarNeuroscience

SYNGAP1 and Epilepsy SurgerySYNGAP1 and Epilepsy Surgery

Taylor Abel, MD and Monika Jones, JD
Pediatric Epilepsy Surgery Program at UPMC Children’s Hospital of Pittsburgh/Pediatric Epilepsy Surgery Alliance
Feb 15, 2023
SeminarNeuroscienceRecording

Brain mosaicism in epileptogenic cortical malformations

Stéphanie Baulac
ICM Paris
Jan 31, 2023

Focal Cortical Dysplasia (FCD) is the most common focal cortical malformation leading to intractable childhood focal epilepsy. In recent years, we and others have shown that FCD type II is caused by mosaic mutations in genes within the PI3K-AKT-mTOR-signaling pathway. Hyperactivation of the mTOR pathway accounts for neuropathological abnormalities and seizure occurrence in FCD. We further showed from human surgical FCDII tissue that epileptiform activity correlates with the density of mutated dysmorphic neurons, supporting their pro-epileptogenic role. The level of mosaicism, as defined by variant allele frequency (VAF) is thought to correlate with the size and regional brain distribution of the lesion such that when a somatic mutation occurs early during the cortical development, the dysplastic area is smaller than if it occurs later. Novel approaches based on the detection of cell-free DNA from the CSF and from trace tissue adherent to SEEG electrodes promise future opportunities for genetic testing during the presurgical evaluation of refractory epilepsy patients or in those that are not eligible for surgery. In utero-based electroporation mouse models allow to express somatic mutation during neurodevelopment and recapitulate most neuropathological and clinical features of FCDII, establishing relevant preclinical mouse models for developing precision medicine strategies.

SeminarNeuroscience

Wave-front shaping and circuit optogenetics

Valentina Emiliani
Wavefront-engineering microscopy group, Vision Institute, Paris, France
Nov 22, 2022
SeminarNeuroscience

Modern Approaches to Behavioural Analysis

Alexander Mathis
EPFL, Switzerland
Nov 20, 2022

The goal of neuroscience is to understand how the nervous system controls behaviour, not only in the simplified environments of the lab, but also in the natural environments for which nervous systems evolved. In pursuing this goal, neuroscience research is supported by an ever-larger toolbox, ranging from optogenetics to connectomics. However, often these tools are coupled with reductionist approaches for linking nervous systems and behaviour. This course will introduce advanced techniques for measuring and analysing behaviour, as well as three fundamental principles as necessary to understanding biological behaviour: (1) morphology and environment; (2) action-perception closed loops and purpose; and (3) individuality and historical contingencies [1]. [1] Gomez-Marin, A., & Ghazanfar, A. A. (2019). The life of behavior. Neuron, 104(1), 25-36

SeminarNeuroscienceRecording

Hypothalamic episode generators underlying the neural control of fertility

Allan Herbison
Department of Physiology, Development and Neuroscience, University of Cambridge
Nov 7, 2022

The hypothalamus controls diverse homeostatic functions including fertility. Neural episode generators are required to drive the intermittent pulsatile and surge profiles of reproductive hormone secretion that control gonadal function. Studies in genetic mouse models have been fundamental in defining the neural circuits forming these central pattern generators and the full range of in vitro and in vivo optogenetic and chemogenetic methodologies have enabled investigation into their mechanism of action. The seminar will outline studies defining the hypothalamic “GnRH pulse generator network” and current understanding of its operation to drive pulsatile hormone secretion.

SeminarNeuroscience

An epigenetic perspective on stem cell specification in the developing CNS

Tanja Vogel, PhD
University of Freiburg
Oct 4, 2022
SeminarNeuroscienceRecording

Targeting alternative splicing of SYNGAP1 using antisense oligonucleotides

Benjamin Prosser
University of Pennsylvania Perelman School of Medicine, PhD
Sep 28, 2022
SeminarNeuroscienceRecording

Linking GWAS to pharmacological treatments for psychiatric disorders

Aurina Arnatkeviciute
Monash University
Aug 18, 2022

Genome-wide association studies (GWAS) have identified multiple disease-associated genetic variations across different psychiatric disorders raising the question of how these genetic variants relate to the corresponding pharmacological treatments. In this talk, I will outline our work investigating whether functional information from a range of open bioinformatics datasets such as protein interaction network (PPI), brain eQTL, and gene expression pattern across the brain can uncover the relationship between GWAS-identified genetic variation and the genes targeted by current drugs for psychiatric disorders. Focusing on four psychiatric disorders---ADHD, bipolar disorder, schizophrenia, and major depressive disorder---we assess relationships between the gene targets of drug treatments and GWAS hits and show that while incorporating information derived from functional bioinformatics data, such as the PPI network and spatial gene expression, can reveal links for bipolar disorder, the overall correspondence between treatment targets and GWAS-implicated genes in psychiatric disorders rarely exceeds null expectations. This relatively low degree of correspondence across modalities suggests that the genetic mechanisms driving the risk for psychiatric disorders may be distinct from the pathophysiological mechanisms used for targeting symptom manifestations through pharmacological treatments and that novel approaches for understanding and treating psychiatric disorders may be required.

SeminarNeuroscience

At the nexus of genes, aging and environment: Understanding transcriptomic and epigenomic regulation in Parkinson's disease

Julia Schulze-Hentrich
Institute of Medical Genetics and Applied Genomics, University of Tübingen
Jul 19, 2022

Parkinson’s Disease (PD), the most common neurodegenerative movement disorder, is based on a complex interplay between genetic predispositions, aging processes, and environmental influences. In order to better understand the gene-environment axis in PD, we pursue a multi-omics approach to comprehensively interrogate genome-wide changes in histone modifications, DNA methylation, and hydroxymethylation, accompanied by transcriptomic profiling in cell and animal models of PD as well as large patient cohorts. Furthermore, we assess the plasticity of epigenomic modifications under influence of environmental factors using longitudinal cohorts of sporadic PD cases as well as mouse models exposed to specific environmental factors. Here, we present gene expression changes in PD mouse models in context of aging as well as environmental enrichment and high-fat diet.

SeminarNeuroscience

The role of astroglia-neuron interactions in generation and spread of seizures

Emre Yaksi
Kavli Institute for Systems Neuroscience, Norwegian University of Science and technology
Jul 5, 2022

Astroglia-neuron interactions are involved in multiple processes, regulating development, excitability and connectivity of neural circuits. Accumulating number of evidences highlight a direct connection between aberrant astroglial genetics and physiology in various forms of epilepsies. Using zebrafish seizure models, we showed that neurons and astroglia follow different spatiotemporal dynamics during transitions from pre-ictal to ictal activity. We observed that during pre-ictal period neurons exhibit local synchrony and low level of activity, whereas astroglia exhibit global synchrony and high-level of calcium signals that are anti correlated with neural activity. Instead, generalized seizures are marked by a massive release of astroglial glutamate release as well as a drastic increase of astroglia and neuronal activity and synchrony across the entire brain. Knocking out astroglial glutamate transporters leads to recurrent spontaneous generalized seizures accompanied with massive astroglial glutamate release. We are currently using a combination of genetic and pharmacological approaches to perturb astroglial glutamate signalling and astroglial gap junctions to further investigate their role in generation and spreading of epileptic seizures across the brain.

SeminarNeuroscience

Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg

Jill Escher
Jill Escher is founder of the Escher Fund for Autism, which funds research on non-genetic inheritance, as well as autism-related programs. She is a member of the governing council of the Environmental Mutagenesis and Genomics Society, where she is past chair of the Germ Cell and Heritable Effects special interest group. She also serves as president of the National Council on Severe Autism and past president of Autism Society San Francisco Bay Area. A former lawyer, she and her husband are the pa
Jul 5, 2022

Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.

SeminarNeuroscienceRecording

Pynapple: a light-weight python package for neural data analysis - webinar + tutorial

Adrien Peyrache and Guillaume Viejo
McGill University, Canada
Jun 28, 2022

In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.

SeminarNeuroscienceRecording

Pynapple: a light-weight python package for neural data analysis - webinar + tutorial

Adrien Peyrache and Guillaume Viejo
McGill University, Canada
Jun 27, 2022

In systems neuroscience, datasets are multimodal and include data-streams of various origins: multichannel electrophysiology, 1- or 2-p calcium imaging, behavior, etc. Often, the exact nature of data streams are unique to each lab, if not each project. Analyzing these datasets in an efficient and open way is crucial for collaboration and reproducibility. In this combined webinar and tutorial, Adrien Peyrache and Guillaume Viejo will present Pynapple, a Python-based data analysis pipeline for systems neuroscience. Designed for flexibility and versatility, Pynapple allows users to perform cross-modal neural data analysis via a common programming approach which facilitates easy sharing of both analysis code and data.

SeminarNeuroscience

Cell-type specific genomics and transcriptomics of HIV in the brain

Amara Plaza-Jennings
Icahn School of Medicine at Mt. Sinai, NYC
Jun 21, 2022

Exploration of genome organization and function in the HIV infected brain is critical to aid in the understanding and development of treatments for HIV-associated neurocognitive disorder (HAND). Here, we applied a multiomic approach, including single nuclei transcriptomics, cell-type specific Hi-C 3D genome mapping, and viral integration site sequencing (IS-seq) to frontal lobe tissue from HIV-infected individuals with encephalitis (HIVE) and without encephalitis (HIV+). We observed reorganization of open/repressive (A/B) compartment structures in HIVE microglia encompassing 6.4% of the genome with enrichment for regions containing interferon (IFN) pathway genes. 3D genome remodeling was associated with transcriptomic reprogramming, including down-regulation of cell adhesion and synapse-related functions and robust activation of IFN signaling and cell migratory pathways, and was recapitulated by IFN-g stimulation of cultured microglial cells. Microglia from HIV+ brains showed, to a lesser extent, similar transcriptional alterations. IS-seq recovered 1,221 integration sites in the brain that were enriched for chromosomal domains newly mobilized into a permissive chromatin environment in HIVE microglia. Viral transcription, which was detected in 0.003% of all nuclei in HIVE brain, occurred in a subset of highly activated microglia that drove differential expression in HIVE. Thus, we observed a dynamic interrelationship of interferon-associated 3D genome and transcriptome remodeling with HIV integration and transcription in the brain.

SeminarNeuroscienceRecording

Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans

Vladyslava Pechuk
Oren lab, Weizmann Institute of Science
Jun 7, 2022

In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.

SeminarNeuroscienceRecording

Modularity and Robustness of Frontal Cortical Networks

Nuo Li
Baylor College of Medicine, USA
May 23, 2022

Nuo Li (Baylor College of Medicine, USA) shares novel insights into coordinated interhemispheric large-scale neural network activity underpinning short-term memory in mice. Relevant techniques covered include: simultaneous multi-regional recordings using multiple 64-channel H probes during head-fixed behavior in mice. simultaneous optogenetics and population recording. analysis of population recordings to infer interactions between brain regions. Reference: Chen G, Kang B, Lindsey J, Druckmann S, Li N, (2021). Modularity and robustness of frontal cortex networks. Cell, 184(14):3717-3730.

SeminarNeuroscience

Neural Representations of Social Homeostasis

Kay M. Tye
HHMI Investigator, and Wylie Vale Chair, The Salk Institute for Biological Studies, SNL-KT
May 16, 2022

How does our brain rapidly determine if something is good or bad? How do we know our place within a social group? How do we know how to behave appropriately in dynamic environments with ever-changing conditions? The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviors ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviors. We have also become interested in “social homeostasis” -- how our brains establish a preferred set-point for social contact, and how this maintains stability within a social group. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behavior.

SeminarNeuroscience

Cell type-specific gene regulatory mechanisms associated with addiction-related behaviors in rats

Francesca Telese, PhD
University of California, San Diego
May 10, 2022

Understanding the fundamental gene regulatory mechanisms underlying addiction and related behaviors could facilitate more effective treatments. We discuss our work using multi-omics methods to provide mechanistic and functional insights into how addiction perturbs gene regulatory programs in the rat brain, with single-cell resolution.

SeminarNeuroscience

Cognitive experience alters cortical involvement in navigation decisions

Charlotte Arlt
Harvard
Apr 21, 2022

The neural correlates of decision-making have been investigated extensively, and recent work aims to identify under what conditions cortex is actually necessary for making accurate decisions. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same task, revealing past learning as a critical determinant of whether cortex is necessary for decision tasks. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation-based visual discrimination task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multi-area calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron-neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in decision tasks.

SeminarNeuroscienceRecording

Cortex-dependent corrections as the mouse tongue reaches for and misses targets

Brendan Ito & Teja Bollu
Cornell University, USA & Salk Institute, USA
Apr 19, 2022

Brendan Ito (Cornell University, USA) and Teja Bollu (Salk Institute, USA) share unique insights into rapid online motor corrections during mouse licking, analogous to primate goal-oriented reaching. Techniques covered include large-scale single unit recording during behaviour with optogenetics, and a deep-learning-based neural network to resolve 3D tongue kinematics during licking.

SeminarNeuroscienceRecording

Genetic-based brain machine interfaces for visual restoration

Serge Picaud
Institute Vision Paris
Apr 12, 2022

Visual restoration is certainly the greatest challenge for brain-machine interfaces with the high pixel number and high refreshing rate. In the recent year, we brought retinal prostheses and optogenetic therapy up to successful clinical trials. Concerning visual restoration at the cortical level, prostheses have shown efficacy for limited periods of time and limited pixel numbers. We are investigating the potential of sonogenetics to develop a non-contact brain machine interface allowing long-lasting activation of the visual cortex. The presentation will introduce our genetic-based brain machine interfaces for visual restoration at the retinal and cortical levels.

ePoster

Characterization of neuronal resonance and inter-areal transfer using optogenetics

COSYNE 2022

ePoster

Balanced two-photon holographic bidirectional optogenetics defines the mechanism for stimulus quenching of neural variability

Kevin Sit, Brent Doiron, Chengcheng Huang, Hillel Adesnik

COSYNE 2025

ePoster

InLOV: Optogenetics for light-controlled insulin signaling modulates neuronal plasticity and cerebellar-driven behavior

Ida Siveke, Bianca Preissing, Lennard Rohr, Marija Trajkovic-Arsic, Anna-Lena Linke, Sven-Thorsten Liffers, Jens Thomas Siveke, Stefan Herlitze

FENS Forum 2024

ePoster

Network modulation using pathway and neuromodulator specific chemogenetics in macaque frontal cortex: Foraging behaviour, imaging and histology

Clémence Gandaux, Jérôme Sallet, Emmanuel Procyk, Charles Wilson

FENS Forum 2024

ePoster

Probing neural circuit motifs in zebrafish using holographic optogenetics

Rahul Trivedi, Jennifer Li, Drew Robson

FENS Forum 2024

ePoster

Shared genetics between addiction, aggression, and related behavioural traits

Ester Anton-Galindo, Edurne Gago Garcia, Maja Rebecca Adel, Conxita Arenas, Bru Cormand, Judit Cabana-Domínguez, Noelia Fernàndez-Castillo

FENS Forum 2024

ePoster

Sonogenetics: From the mechano-sensitive channel to brain stimulation for visual restoration

Erwan Dessailly, Ignacio Alcala, Matthieu Provencal, Audrey Leong, Rafik Arab, Pierre Pouget, Fabrice Arcizet, Serge Picaud

FENS Forum 2024

ePoster

Understanding LZK-mediated reactive astrogliosis and neuronal repair using mouse molecular genetics and transcriptomic profiling

Kween Agba, Tiffany Gavin, Binhai Zheng

FENS Forum 2024

ePoster

Untangling the visuomotor circuit in intact and regenerating brains of the axolotl (Ambystoma mexicanum) using behavioral assays, calcium imaging, and optogenetics

Simone Horenkamp, Deniz Demirkesenler, Claudio Polisseni

FENS Forum 2024

ePoster

Upconversion-mediated transcranial optogenetics: Juggling with photons to control fear in mice

Jeremy Lesas, Jonathan Daniel, Thomas Bienvenu, Dalel El Marrouki, Juliette Vivien, Salwa Dhiba, Frédéric Lanore, Delphine Girard, Pierre Feugas, Eléonore Kurek, Airton Sinott Carvalho, Clément Hazet, Yann Humeau, Mireille Blanchard-Desce, Cyril Herry, Cyril Dejean

FENS Forum 2024

ePoster

Wireless headstage controlled via Bluetooth for closed-loop optogenetics experiments in rodents

Patrícia Silva, Margarida Falcão, Mafalda Abrantes, Francisco Neves, Tiago Pereira, Jérôme Borme, Pedro Alpuim, Patricia Monteiro, Luis Jacinto

FENS Forum 2024