← Back

Human Creativity

Topic spotlight
TopicWorld Wide

human creativity

Discover seminars, jobs, and research tagged with human creativity across World Wide.
2 curated items2 Seminars
Updated over 4 years ago
2 items · human creativity
2 results
SeminarNeuroscienceRecording

Storythinking: Why Your Brain is Creative in Ways that Computer AI Can't Ever Be

Angus Fletcher
Ohio State
Aug 31, 2021

Computer AI thinks differently from us, which is why it's such a useful tool. Thanks to the ingenuity of human programmers, AI's different method of thinking has made humans redundant at certain human tasks, such as chess. Yet there are mechanical limits to how far AI can replicate the products of human thinking. In this talk, we'll trace one such limit by exploring how AI and humans create differently. Humans create by reverse-engineering tools or behaviors to accomplish new actions. AI creates by mix-and-matching pieces of preexisting structures and labeling which combos are associated with positive and negative results. This different procedure is why AI cannot (and will never) learn to innovate technology or tactics and why it also cannot (and will never) learn to generate narratives (including novels, business plans, and scientific hypotheses). It also serves as a case study in why there's no reason to believe in "general intelligence" and why computer AI would have to partner with other mechanical forms of AI (run on non-computer hardware that, as of yet, does not exist, and would require humans to invent) for AI to take over the globe.

SeminarNeuroscienceRecording

Context and Comparison During Open-Ended Induction

Robert Goldstone
Indiana University, Bloomington
Jan 20, 2021

A key component of humans' striking creativity in solving problems is our ability to construct novel descriptions to help us characterize novel categories. Bongard problems, which challenge the problem solver to come up with a rule for distinguishing visual scenes that fall into two categories, provide an elegant test of this ability. Bongard problems are challenging for both human and machine category learners because only a handful of example scenes are presented for each category, and they often require the open-ended creation of new descriptions. A new sub-type of Bongard problem called Physical Bongard Problems (PBPs) is introduced, which require solvers to perceive and predict the physical spatial dynamics implicit in the depicted scenes. The PATHS (Perceiving And Testing Hypotheses on Structures) computational model which can solve many PBPs is presented, and compared to human performance on the same problems. PATHS and humans are similarly affected by the ordering of scenes within a PBP, with spatially and temporally juxtaposed scenes promoting category learning when they are similar and belong to different categories, or dissimilar and belong to the same category. The core theoretical commitments of PATHS which we believe to also exemplify human open-ended category learning are a) the continual perception of new scene descriptions over the course of category learning; b) the context-dependent nature of that perceptual process, in which the scenes establish the context for one another; c) hypothesis construction by combining descriptions into logical expressions; and d) bi-directional interactions between perceiving new aspects of scenes and constructing hypotheses for the rule that distinguishes categories.