K Channel
K Channel
Acetylcholine modulation of short-term plasticity is critical to reliable long-term plasticity in hippocampal synapses
CA3-CA1 synapses in the hippocampus are the initial locus of episodic memory. The action of acetylcholine alters cellular excitability, modifies neuronal networks, and triggers secondary signaling that directly affects long-term plasticity (LTP) (the cellular underpinning of memory). It is therefore considered a critical regulator of learning and memory in the brain. Its action via M4 metabotropic receptors in the presynaptic terminal of the CA3 neurons and M1 metabotropic receptors in the postsynaptic spines of CA1 neurons produce rich dynamics across multiple timescales. We developed a model to describe the activation of postsynaptic M1 receptors that leads to IP3 production from membrane PIP2 molecules. The binding of IP3 to IP3 receptors in the endoplasmic reticulum (ER) ultimately causes calcium release. This calcium release from the ER activates potassium channels like the calcium-activated SK channels and alters different aspects of synaptic signaling. In an independent signaling cascade, M1 receptors also directly suppress SK channels and the voltage-activated KCNQ2/3 channels, enhancing post-synaptic excitability. In the CA3 presynaptic terminal, we model the reduction of the voltage sensitivity of voltage-gated calcium channels (VGCCs) and the resulting suppression of neurotransmitter release by the action of the M4 receptors. Our results show that the reduced initial release probability because of acetylcholine alters short-term plasticity (STP) dynamics. We characterize the dichotomy of suppressing neurotransmitter release from CA3 neurons and the enhanced excitability of the postsynaptic CA1 spine. Mechanisms underlying STP operate over a few seconds, while those responsible for LTP last for hours, and both forms of plasticity have been linked with very distinct functions in the brain. We show that the concurrent suppression of neurotransmitter release and increased sensitivity conserves neurotransmitter vesicles and enhances the reliability in plasticity. Our work establishes a relationship between STP and LTP coordinated by neuromodulation with acetylcholine.
K+ Channel Gain of Function in Epilepsy, from Currents to Networks
Recent human gene discovery efforts show that gain-of-function (GOF) variants in the KCNT1gene, which encodes a Na+-activated K+ channel subunit, cause severe epilepsies and other neurodevelopmental disorders. Although the impact of these variants on the biophysical properties of the channels is well characterized, the mechanisms that link channel dysfunction to cellular and network hyperexcitability and human disease are unknown. Furthermore, precision therapies that correct channel biophysics in non-neuronal cells have had limited success in treating human disease, highlighting the need for a deeper understanding of how these variants affect neurons and networks. To address this gap, we developed a new mouse model with a pathogenic human variant knocked into the mouse Kcnt1gene. I will discuss our findings on the in vivo phenotypes of this mouse, focusing on our characterization of epileptiform neural activity using electrophysiology and widefield Ca++imaging. I will also talk about our investigations at the synaptic, cellular, and circuit levels, including the main finding that cortical inhibitory neurons in this model show a reduction in intrinsic excitability and action potential generation. Finally, I will discuss future directions to better understand the mechanisms underlying the cell-type specific effects, as well as the link between the cellular and network level effects of KCNT1 GOF.