← Back

Lamin A

Topic spotlight
TopicWorld Wide

lamin A

Discover seminars, jobs, and research tagged with lamin A across World Wide.
3 curated items2 Seminars1 ePoster
Updated over 4 years ago
3 items · lamin A
3 results
SeminarNeuroscience

Toxic effect of pathogenic tau on the nucleus

Bess Frost
University of Texas Health San Antonio
May 25, 2021

The nuclear envelope is a lipid bilayer that encases the genome and provides a physical boundary between the cytoplasm and the nucleoplasm. While the nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope, the smooth exterior can be interrupted by tubular invaginations of the nuclear envelope into the deep nuclear interior. Such structures are termed the "nucleoplasmic reticulum." Increased frequency of nuclear envelope invagination occurs in disease states including various cancers, viral infections, and laminopathies, a group of heterogeneous disorders that arise due to mutations in the gene encoding lamin A. A significant increase in the frequency of nuclear envelope invaginations in the human Alzheimer's disease brain has recently been reported. Nuclear envelope invaginations are caused by pathogenic tau, one of the two major pathological hallmarks of Alzheimer's disease. Pathogenic tau-induced dysfunction of the lamin nucleoskeleton drives nuclear envelope invagination and consequent accumulation of polyadenylated RNA within invaginations, both of which drive neuronal death. Our ongoing studies suggest that maintaining proper cytoskeletal, nucleoskeletal, and genomic architecture are critical for survival and function of adult neurons.

SeminarNeuroscienceRecording

Understanding and treating epilepsy in tuberous sclerosis complex

Angelique Bordey
Yale University
May 4, 2021

Tuberous sclerosis complex (TSC) and focal cortical dysplasia type II (FCDII) are caused by mutations in mTOR pathway genes leading to mTOR hyperactivity, focal malformations of cortical development (fMCD), and seizures in 80-90% of the patients. The current definitive treatments for epilepsy are surgical resection or treatment with everolimus, which inhibits mTOR activity (only approved for TSC). Because both options have severe limitations, there is a major need to better understand the mechanisms leading to seizures to improve life-long epilepsy treatment in TSC and FCDII. To investigate such mechanisms, we recently developed a murine model of fMCD-associated epilepsy that recapitulates the human TSC and FCDII disorders. fMCD are defined by the presence of misplaced, dysmorphic cortical neurons expressing hyperactive mTOR – for simplicity we will refer to these as “mutant” neurons. In our model and in human TSC tissue, we made a surprising finding that mutant neurons express HCN4 channels, which are not normally functionally expressed in cortical neurons, and increased levels of filamin A (FLNA). FLNA is an actin-crossing linking molecule that has also multiple binding partners inside cells. These data led us to ask several important questions: (1) As HCN4 channels are responsible for the pacemaking activity of the heart, can HCN4 channel expression lead to repetitive firing of mutant neurons resulting in seizures? (2) HCN4 is the most cAMP-sensitive of the four HCN isoforms. Does increase in cAMP lead to the firing of mutant neurons? (3) Does increase in FLNA contribute to neuronal alterations and seizures? (4) Is the abnormal HCN4 and FLNA expression in mutant neurons due to mTOR? These questions will be discussed and addressed in the lecture.

ePoster

Filamin A modulates dendritic branching via integrin-Akt axis and actin cytoskeleton

Yunus Emre Demiray, Stefanie Kliche, Oliver Stork

FENS Forum 2024