Light Response
light response
The multi-phase plasticity supporting winner effect
Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.
Interplay between circuits that mediate spontaneous retinal waves and early light responses during retinal development
How do ipRGCs work? Evidence from the pupil light reflex
Since the discovery of the intrinsically photosensitive retinal ganglion cells (ipRGCs) – just two decades ago – substantial work has been carried out trying to understand their functioning. In this seminar, I’ll focus on pupillometry studies that have provided key clues about ipRGC behavior. Specifically, the interaction between the intrinsic response, rods, and cones will be discussed.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
Top-down modulation of the retinal code via histaminergic neurons in the hypothalamus
The mammalian retina is considered an autonomous neuronal tissue, yet there is evidence that it receives inputs from the brain in the form of retinopetal axons. A sub-population of these axons was suggested to belong to histaminergic neurons located in the tuberomammillarynucleus (TMN) of the hypothalamus. Using viral injections to the TMN, we identified these retinopetal axons and found that although few in number, they extensively branch to cover a large portion of the retina. Using Ca2+ imaging and electrophysiology, we show that histamine application increases spontaneous firing rates and alters the light responses of a significant portion of retinal ganglion cells (RGCs). Direct activation of the histaminergic axons also induced significant changes in RGCs activity. Since activity in the TMN was shown to correlate with arousal state, our data suggest the retinal code may change with the animal's behavioral state through the release of histamine from TMN histaminergic neurons.
Safety in numbers: how animals use motion of others as threat or safety cues
Our work concerns the general problem of adaptive behaviour in response to predatory threats, and of the neural mechanisms underlying a choice between strategies. When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behaviour in rodents, but how contextual information is integrated to guide this choice is still far from understood. The social environment is a potent contextual modulator of defensive behaviours of animals in a group. Indeed, anti-predation strategies are believed to be a major driving force for the evolution of sociality. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices accompanied by lasting changes in the fly’s internal state, reflected in altered cardiac activity. In this talk, I will discuss our work on how flies process contextual cues, focusing on the social environment, to guide their behavioural response to a threat. We have identified a social safety cue, resumption of activity, and visual projection neurons involved in processing this cue. Given the knowledge regarding sensory detection of looming threats and descending neuron involved in the expression of freezing, we are now in a unique position to understand how information about a threat is integrated with cues from the social environment to guide the choice of whether to freeze.
Understanding how photoreceptor degeneration alters retinal signaling, and how to intervene to rescue vision
Age-related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are vision disorders caused by loss of rod and cone photoreceptors, but downstream retinal neurons also show physiological and morphological changes, resulting in the emergence of hyperactivity and rhythmic firing in many retinal ganglion cells (RGC). We recently discovered that retinoic acid (RA) is a key signal that triggers hyperactivity and that blockers of RA unmask light responses in RGCs that would otherwise be obscured. Recent work is revealing where in the retina circuit RA initiates functional changes. Moreover, interfering with the RA signaling pathway with drug or gene therapy can improve spatial vision in a mouse model of RP, providing a new strategy for enhancing low vision in human RP and AMD.
Toward a Comprehensive Classification of Mouse Retinal Ganglion Cells: Morphology, Function, Gene Expression, and Central Projections
I will introduce a web portal for the retinal neuroscience community to explore the catalog of mouse retinal ganglion cell (RGC) types, including data on light responses, correspondences with morphological types in EyeWire, and gene expression data from single-cell transcriptomics. Our current classification includes 43 types, accounting for 90% of the cells in EyeWire. Many of these cell types have new stories to tell, and I will cover two of them that represent opposite ends of the spectrum of levels of analysis in my lab. First, I will introduce the “Bursty Suppressed-by-Contrast” RGC and show how its intrinsic properties rather than its synaptic inputs differentiate its function from that of a different well-known RGC type. Second, I will present the histogram of cell types that project to the Olivary Pretectal Nucleus, focusing on the recently discovered M6 ipRGC.
The pupillary light response is mediated by direct retino-iridal projections together with iris intrinsic contraction in lampreys
FENS Forum 2024