← Back

Magnetoencephalography

Topic spotlight
TopicWorld Wide

magnetoencephalography

Discover seminars, jobs, and research tagged with magnetoencephalography across World Wide.
17 curated items12 Seminars4 Positions1 ePoster
Updated 1 day ago
17 items · magnetoencephalography
17 results
Position

Viviane Burghardt

University of Geneva
Geneva, Switzerland
Dec 5, 2025

This is a full-time position in Dynamics of brain functions and human electrophysiology using magnetoencephalography (MEG) and high-resolution electroencephalography (EEG) to characterize neuronal activity in the normal and pathological brain. This position is related to National Centres of Competence in Research (NCCR) Evolving Language. Expertise in MEG/EEG data analysis, methodology and modelling is required, in addition to a specific focus on language functions. The incumbent will undertake research in this area at the highest national and international levels and secure external funding. The position will also involve undergraduate at bachelor and master levels and postgraduate teaching in cognitive neuroscience, as well as supervising Masters' and doctoral theses. The incumbent will also take up administrative and organizational duties within the Department of Fundamental Neuroscience and at the Faculty of Medicine.

Position

Dr. Konstantinos Tsetsos

University of Bristol, Macquarie University
University of Bristol and Macquarie University
Dec 5, 2025

We are offering a fully funded PhD opportunity to examine the interplay between attention and decision-making in complex, naturalistic tasks using advanced electro-/magnetoencephalography (E/MEG) techniques. Strong quantitative skills will be advantageous for this project. The project will be co-supervised by Dr. Konstantinos Tsetsos (University of Bristol) and Professor Anina Rich (Macquarie University). The selected student will join a unique PhD cohort, as part of a cotutelle graduate program between the University of Bristol and Macquarie University.

Position

N/A

Centre de Physique Théorique, Marseille and Institut des Neurosciences de la Timone, Marseille
Centre de Physique Théorique on the Luminy Campus (south of Marseille) and Institut des Neurosciences de la Timone in the La Timone campus, Marseille
Dec 5, 2025

The hired postdoctoral researcher will mainly work on WP2, i.e., on the development of new formalisms and methods to apply to higher order interaction patterns identified in the data analyzed in WP1. The project aims to build a theoretical and data analysis framework to demonstrate the role of higher-order interactions (HOIs) in human brain networks supporting causal learning. The Hinteract project includes three scientific work packages (WPs): WP1 focuses on developing an informational theoretical approach to infer task-related HOIs from neural time series and characterizing HOIs supporting causal learning using MEG and SEEG data. WP2 involves developing a network science formalism to analyze the structure and dynamics of functional HOIs patterns and characterizing the hierarchical organization of learning-related HOIs. WP3 is about compiling and sharing neuroinformatics tools developed in the project and making them interoperable with the EBRAINS infrastructure.

Position

Prof. Dominik R Bach

University of Bonn
Bonn, Germany
Dec 5, 2025

The Hertz Chair for Artificial Intelligence and Neuroscience at University of Bonn is looking to recruit a postdoctoral fellow or PhD student to undertake high quality research and produce high-impact publications in a collaborative research project investigating human escape using wearable magnetoencephalography with optically pumped magnometers (OPM). The goal of the advertised position is to understand the neural control of human escape decisions in an immersive virtual reality (VR) environment using an OPM-compatible HMD, in collaboration with the Wellcome Platform for Naturalistic Neuroimaging, which is part of the FIL at the UCL Queen Square Institute of Neurology, London, UK. The role includes conceptual design of naturalistic VR scenarios that allow MEG recordings, planning, conducting, and analysing MEG experiments, building robust pipelines for MEG analysis in naturalistic settings, and publication of research and development results.

SeminarNeuroscience

Magnetoencephalography now and how to move it forward

Lauri Parkkonen
Aalto University, Finland
Jan 22, 2024
SeminarNeuroscience

Trends in NeuroAI - Meta's MEG-to-image reconstruction

Paul Scotti
Dec 6, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). This will be an informal journal club presentation, we do not have an author of the paper joining us. Title: Brain decoding: toward real-time reconstruction of visual perception Abstract: In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution (≈0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution (≈5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that MEG signals primarily contain high-level visual features, whereas the same approach applied to 7T fMRI also recovers low-level features. Overall, these results provide an important step towards the decoding - in real time - of the visual processes continuously unfolding within the human brain. Speaker: Dr. Paul Scotti (Stability AI, MedARC) Paper link: https://arxiv.org/abs/2310.19812

SeminarNeuroscience

In vivo direct imaging of neuronal activity at high temporospatial resolution

Jang-Yeon Park
Sungkyunkwan University, Suwon, Korea
Jun 27, 2023

Advanced noninvasive neuroimaging methods provide valuable information on the brain function, but they have obvious pros and cons in terms of temporal and spatial resolution. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) effect provides good spatial resolution in the order of millimeters, but has a poor temporal resolution in the order of seconds due to slow hemodynamic responses to neuronal activation, providing indirect information on neuronal activity. In contrast, electroencephalography (EEG) and magnetoencephalography (MEG) provide excellent temporal resolution in the millisecond range, but spatial information is limited to centimeter scales. Therefore, there has been a longstanding demand for noninvasive brain imaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. In this talk, I will introduce a novel approach that enables Direct Imaging of Neuronal Activity (DIANA) using MRI that can dynamically image neuronal spiking activity in milliseconds precision, achieved by data acquisition scheme of rapid 2D line scan synchronized with periodically applied functional stimuli. DIANA was demonstrated through in vivo mouse brain imaging on a 9.4T animal scanner during electrical whisker-pad stimulation. DIANA with milliseconds temporal resolution had high correlations with neuronal spike activities, which could also be applied in capturing the sequential propagation of neuronal activity along the thalamocortical pathway of brain networks. In terms of the contrast mechanism, DIANA was almost unaffected by hemodynamic responses, but was subject to changes in membrane potential-associated tissue relaxation times such as T2 relaxation time. DIANA is expected to break new ground in brain science by providing an in-depth understanding of the hierarchical functional organization of the brain, including the spatiotemporal dynamics of neural networks.

SeminarNeuroscienceRecording

Estimating repetitive spatiotemporal patterns from resting-state brain activity data

Yusuke Takeda
Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Japan
Apr 27, 2023

Repetitive spatiotemporal patterns in resting-state brain activities have been widely observed in various species and regions, such as rat and cat visual cortices. Since they resemble the preceding brain activities during tasks, they are assumed to reflect past experiences embedded in neuronal circuits. Moreover, spatiotemporal patterns involving whole-brain activities may also reflect a process that integrates information distributed over the entire brain, such as motor and visual information. Therefore, revealing such patterns may elucidate how the information is integrated to generate consciousness. In this talk, I will introduce our proposed method to estimate repetitive spatiotemporal patterns from resting-state brain activity data and show the spatiotemporal patterns estimated from human resting-state magnetoencephalography (MEG) and electroencephalography (EEG) data. Our analyses suggest that the patterns involved whole-brain propagating activities that reflected a process to integrate the information distributed over frequencies and networks. I will also introduce our current attempt to reveal signal flows and their roles in the spatiotemporal patterns using a big dataset. - Takeda et al., Estimating repetitive spatiotemporal patterns from resting-state brain activity data. NeuroImage (2016); 133:251-65. - Takeda et al., Whole-brain propagating patterns in human resting-state brain activities. NeuroImage (2021); 245:118711.

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 28, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscience

Adaptive neural network classifier for decoding finger movements

Alexey Zabolotniy
HSE University
Jun 1, 2022

While non-invasive Brain-to-Computer interface can accurately classify the lateralization of hand moments, the distinction of fingers activation in the same hand is limited by their local and overlapping representation in the motor cortex. In particular, the low signal-to-noise ratio restrains the opportunity to identify meaningful patterns in a supervised fashion. Here we combined Magnetoencephalography (MEG) recordings with advanced decoding strategy to classify finger movements at single trial level. We recorded eight subjects performing a serial reaction time task, where they pressed four buttons with left and right index and middle fingers. We evaluated the classification performance of hand and finger movements with increasingly complex approaches: supervised common spatial patterns and logistic regression (CSP + LR) and unsupervised linear finite convolutional neural network (LF-CNN). The right vs left fingers classification performance was accurate above 90% for all methods. However, the classification of the single finger provided the following accuracy: CSP+SVM : – 68 ± 7%, LF-CNN : 71 ± 10%. CNN methods allowed the inspection of spatial and spectral patterns, which reflected activity in the motor cortex in the theta and alpha ranges. Thus, we have shown that the use of CNN in decoding MEG single trials with low signal to noise ratio is a promising approach that, in turn, could be extended to a manifold of problems in clinical and cognitive neuroscience.

SeminarNeuroscienceRecording

Visualization and manipulation of our perception and imagery by BCI

Takufumi Yanagisawa
Osaka University
Mar 31, 2022

We have been developing Brain-Computer Interface (BCI) using electrocorticography (ECoG) [1] , which is recorded by electrodes implanted on brain surface, and magnetoencephalography (MEG) [2] , which records the cortical activities non-invasively, for the clinical applications. The invasive BCI using ECoG has been applied for severely paralyzed patient to restore the communication and motor function. The non-invasive BCI using MEG has been applied as a neurofeedback tool to modulate some pathological neural activities to treat some neuropsychiatric disorders. Although these techniques have been developed for clinical application, BCI is also an important tool to investigate neural function. For example, motor BCI records some neural activities in a part of the motor cortex to generate some movements of external devices. Although our motor system consists of complex system including motor cortex, basal ganglia, cerebellum, spinal cord and muscles, the BCI affords us to simplify the motor system with exactly known inputs, outputs and the relation of them. We can investigate the motor system by manipulating the parameters in BCI system. Recently, we are developing some BCIs to visualize and manipulate our perception and mental imagery. Although these BCI has been developed for clinical application, the BCI will be useful to understand our neural system to generate the perception and imagery. In this talk, I will introduce our study of phantom limb pain [3] , that is controlled by MEG-BCI, and the development of a communication BCI using ECoG [4] , that enable the subject to visualize the contents of their mental imagery. And I would like to discuss how much we can control our cortical activities that represent our perception and mental imagery. These examples demonstrate that BCI is a promising tool to visualize and manipulate the perception and imagery and to understand our consciousness. References 1. Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. AnnNeurol 71, 353-361. 2. Yanagisawa, T., Fukuma, R., Seymour, B., Hosomi, K., Kishima, H., Shimizu, T., Yokoi, H., Hirata, M., Yoshimine, T., Kamitani, Y., et al. (2016). Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nature communications 7, 13209. 3. Yanagisawa, T., Fukuma, R., Seymour, B., Tanaka, M., Hosomi, K., Yamashita, O., Kishima, H., Kamitani, Y., and Saitoh, Y. (2020). BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial. Neurology 95, e417-e426. 4. Ryohei Fukuma, Takufumi Yanagisawa, Shinji Nishimoto, Hidenori Sugano, Kentaro Tamura, Shota Yamamoto, Yasushi Iimura, Yuya Fujita, Satoru Oshino, Naoki Tani, Naoko Koide-Majima, Yukiyasu Kamitani, Haruhiko Kishima (2022). Voluntary control of semantic neural representations by imagery with conflicting visual stimulation. arXiv arXiv:2112.01223.

SeminarNeuroscienceRecording

Frontal circuit specialisations for information search and decision making

Laurence Hunt
Oxford University
Jan 27, 2022

During primate evolution, prefrontal cortex (PFC) expanded substantially relative to other cortical areas. The expansion of PFC circuits likely supported the increased cognitive abilities of humans and anthropoids to sample information about their environment, evaluate that information, plan, and decide between different courses of action. What quantities do these circuits compute as information is being sampled towards and a decision is being made? And how can they be related to anatomical specialisations within and across PFC? To address this, we recorded PFC activity during value-based decision making using single unit recording in non-human primates and magnetoencephalography in humans. At a macrocircuit level, we found that value correlates differ substantially across PFC subregions. They are heavily shaped by each subregion’s anatomical connections and by the decision-maker’s current locus of attention. At a microcircuit level, we found that the temporal evolution of value correlates can be predicted using cortical recurrent network models that temporally integrate incoming decision evidence. These models reflect the fact that PFC circuits are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. Our findings build upon recent work describing economic decision making as a process of attention-weighted evidence integration across time.

SeminarNeuroscienceRecording

Frontal circuit specialisations for decision making

Laurence Hunt
University of Oxford
May 26, 2021

During primate evolution, prefrontal cortex (PFC) expanded substantially relative to other cortical areas. The expansion of PFC circuits likely supported the increased cognitive abilities of humans and anthropoids to plan, evaluate, and decide between different courses of action. But what do these circuits compute as a decision is being made, and how can they be related to anatomical specialisations within and across PFC? To address this, we recorded PFC activity during value-based decision making using single unit recording in non-human primates and magnetoencephalography in humans. At a macrocircuit level, we found that value correlates differ substantially across PFC subregions. They are heavily shaped by each subregion’s anatomical connections and by the decision-maker’s current locus of attention. At a microcircuit level, we found that the temporal evolution of value correlates can be predicted using cortical recurrent network models that temporally integrate incoming decision evidence. These models reflect the fact that PFC circuits are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. Our findings build upon recent work describing economic decision making as a process of attention-weighted evidence integration across time.

SeminarNeuroscienceRecording

Thinking the Right Thoughts

Nathaniel Daw
Princeton University
Mar 3, 2021

In many learning and decision scenarios, especially sequential settings like mazes or games, it is easy to state an objective function but difficult to compute it, for instance because this can require enumerating many possible future trajectories. This, in turn, motivates a variety of more tractable approximations which then raise resource-rationality questions about whether and when an efficient agent should invest time or resources in computing decision variables more accurately. Previous work has used a simple all-or-nothing version of this reasoning as a framework to explain many phenomena of automaticity, habits, and compulsion in humans and animals. Here, I present a more finegrained theoretical analysis of deliberation, which attempts to address not just whether to deliberate vs. act, but which of many possible actions and trajectories to consider. Empirically, I first motivate and compare this account to nonlocal representations of spatial trajectories in the rodent place cell system, which are thought to be involved in planning. I also consider its implications, in humans, for variation over time and situations in subjective feelings of mental effort, boredom, and cognitive fatigue. Finally, I present results from a new study using magnetoencephalography in humans to measure subjective consideration of possible trajectories during a sequential learning task, and study its relationship to rational prioritization and to choice behavior.

SeminarNeuroscience

From oscillations to laminar responses - characterising the neural circuitry of autobiographical memories

Eleanor Maguire
Wellcome Centre for Human Neuroimaging at UCL
Nov 30, 2020

Autobiographical memories are the ghosts of our past. Through them we visit places long departed, see faces once familiar, and hear voices now silent. These, often decades-old, personal experiences can be recalled on a whim or come unbidden into our everyday consciousness. Autobiographical memories are crucial to cognition because they facilitate almost everything we do, endow us with a sense of self and underwrite our capacity for autonomy. They are often compromised by common neurological and psychiatric pathologies with devastating effects. Despite autobiographical memories being central to everyday mental life, there is no agreed model of autobiographical memory retrieval, and we lack an understanding of the neural mechanisms involved. This precludes principled interventions to manage or alleviate memory deficits, and to test the efficacy of treatment regimens. This knowledge gap exists because autobiographical memories are challenging to study – they are immersive, multi-faceted, multi-modal, can stretch over long timescales and are grounded in the real world. One missing piece of the puzzle concerns the millisecond neural dynamics of autobiographical memory retrieval. Surprisingly, there are very few magnetoencephalography (MEG) studies examining such recall, despite the important insights this could offer into the activity and interactions of key brain regions such as the hippocampus and ventromedial prefrontal cortex. In this talk I will describe a series of MEG studies aimed at uncovering the neural circuitry underpinning the recollection of autobiographical memories, and how this changes as memories age. I will end by describing our progress on leveraging an exciting new technology – optically pumped MEG (OP-MEG) which, when combined with virtual reality, offers the opportunity to examine millisecond neural responses from the whole brain, including deep structures, while participants move within a virtual environment, with the attendant head motion and vestibular inputs.

ePoster

Concurrent transcranial electrical stimulation and magnetoencephalography to explore instant neurophysiological stimulation effects

Annel Koomen, Janne Luppi, Cornelis Stam, Yolande Pijnenburg, Willem de Haan

FENS Forum 2024