Male Courtship Behaviour
male courtship behaviour
The neural mechanisms for song evaluation in fruit flies
How does the brain decode the meaning of sound signals, such as music and courtship songs? We believe that the fruit fly Drosophila melanogaster is an ideal model for answering this question, as it offers a comprehensive range of tools and assays which allow us to dissect the mechanisms underlying sound perception and evaluation in the brain. During the courtship behavior, male fruit flies emit “courtship songs” by vibrating their wings. Interestingly, the fly song has a species-specific rhythm, which indeed increases the female’s receptivity for copulation as well as male’s courtship behavior itself. How song signals, especially the species-specific sound rhythm, are evaluated in the fly brain? To tackle this question, we are exploring the features of the fly auditory system systematically. In this lecture, I will talk about our recent findings on the neural basis for song evaluation in fruit flies.
Neural systems for vocal perception
For social animals, successfully communicating with others is essential for interactions and survival. My research aims to answer a central question on the neuronal basis of this ability, from the perspective of the listener: how do our brains enable us to communicate with each other? My work develops nonhuman animal models to study the behavioural and neuronal mechanisms underlying the perception of vocal patterns. I will start by providing an overview of my past research characterizing the neuronal-level substrates of voice processing along the primate temporal lobe. I will then focus on my current work on vocal perception in mice, in which I utilize natural male-female courtship behaviour to evaluate the acoustic dimensions extracted by listeners from ultrasonic sequences. I will then talk about ongoing work investigating the neuronal substrates supporting the perception of behaviourally relevant acoustic cues from mouse vocal sequences.
Theme and variations: circuit mechanisms of behavioural evolution
Animals exhibit extraordinary variation in their behaviour, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviours in Drosophila to gain insight into how evolution shapes the nervous system to generate species-specific behaviours. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 interneurons serve as a conserved and key node in regulating male courtship: these neurons are selectively activated by the sensory cues carried by an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioural evolution, shedding light on the types of changes that are possible and preferable within brain circuits.