← Back

Metastability

Topic spotlight
TopicWorld Wide

metastability

Discover seminars, jobs, and research tagged with metastability across World Wide.
1 curated item1 Seminar
Updated about 4 years ago
1 items · metastability
1 result
SeminarNeuroscienceRecording

NMC4 Short Talk: Synchronization in the Connectome: Metastable oscillatory modes emerge from interactions in the brain spacetime network

Francesca Castaldo
University College London
Nov 30, 2021

The brain exhibits a rich repertoire of oscillatory patterns organized in space, time and frequency. However, despite ever more-detailed characterizations of spectrally-resolved network patterns, the principles governing oscillatory activity at the system-level remain unclear. Here, we propose that the transient emergence of spatially organized brain rhythms are signatures of weakly stable synchronization between subsets of brain areas, naturally occurring at reduced collective frequencies due to the presence of time delays. To test this mechanism, we build a reduced network model representing interactions between local neuronal populations (with damped oscillatory response at 40Hz) coupled in the human neuroanatomical network. Following theoretical predictions, weakly stable cluster synchronization drives a rich repertoire of short-lived (or metastable) oscillatory modes, whose frequency inversely depends on the number of units, the strength of coupling and the propagation times. Despite the significant degree of reduction, we find a range of model parameters where the frequencies of collective oscillations fall in the range of typical brain rhythms, leading to an optimal fit of the power spectra of magnetoencephalographic signals from 89 heathy individuals. These findings provide a mechanistic scenario for the spontaneous emergence of frequency-specific long-range phase-coupling observed in magneto- and electroencephalographic signals as signatures of resonant modes emerging in the space-time structure of the Connectome, reinforcing the importance of incorporating realistic time delays in network models of oscillatory brain activity.