Motion Detection
motion detection
Spatial summation for motion detection
Novel Object Detection and Multiplexed Motion Representation in Retinal Bipolar Cells
Detection of motion is essential for survival, but how the visual system processes moving stimuli is not fully understood. Here, based on a detailed analysis of glutamate release from bipolar cells, we outline the rules that govern the representation of object motion in the early processing stages. Our main findings are as follows: (1) Motion processing begins already at the first retinal synapse. (2) The shape and the amplitude of motion responses cannot be reliably predicted from bipolar cell responses to stationary objects. (3) Enhanced representation of novel objects - particularly in bipolar cells with transient dynamics. (4) Response amplitude in bipolar cells matches visual salience reported in humans: suddenly appearing objects > novel motion > existing motion. These findings can be explained by antagonistic interactions in the center-surround receptive field, demonstrate that despite their simple operational concepts, classical center-surround receptive fields enable sophisticated visual computations.
A dynamical model of the visual cortex
In the past several years, I have been involved in building a biologically realistic model of the monkey visual cortex. Work on one of the input layers (4Ca) of the primary visual cortex (V1) is now nearly complete, and I would like to share some of what I have learned with the community. After a brief overview of the model and its capabilities, I would like to focus on three sets of results that represent three different aspects of the modeling. They are: (i) emergent E-I dynamics in local circuits; (ii) how visual cortical neurons acquire their ability to detect edges and directions of motion, and (iii) a view across the cortical surface: nonequilibrium steady states (in analogy with statistical mechanics) and beyond.
Directly comparing fly and mouse visual systems reveals algorithmic similarities for motion detection
COSYNE 2023
Broken time reversal symmetry in visual motion detection
COSYNE 2025
Recurrent connectivity supports motion detection in connectome-constrained models of fly vision
COSYNE 2025
Spatial and topological variability of dendritic morphology in the motion detection pathway of Drosophila melanogaster
FENS Forum 2024
What you don’t see is what you get: Nonvisual signals dominate vestibulo-ocular reflex adaptation when retinal motion detection is impaired
FENS Forum 2024