← Back

Motor Learning

Topic spotlight
TopicWorld Wide

motor learning

Discover seminars, jobs, and research tagged with motor learning across World Wide.
48 curated items24 ePosters22 Seminars2 Positions
Updated 1 day ago
48 items · motor learning
48 results
Position

Departement of Movement Sciences, KU Leuven

KU Leuven
Belgium
Dec 5, 2025

We are looking for a dynamic and motivated individual (m/f) with an excellent research record in studying the human brain and motor behavior by means of multimodal medical techniques (such as MRI, movement registration, EEG, etc.). We offer a full-time employment in an intellectually challenging environment. KU Leuven is a research-intensive, internationally oriented university that promotes both fundamental and applied scientific research. It is highly focused on inter- and multidisciplinary research and strives for international excellence. It provides its students with an academic education that is based on high-quality scientific research. KU Leuven aims for transparent and reproducible research. You will work in Leuven, a historic, dynamic and lively city located in the heart of Belgium, within 20 minutes from Brussels, the capital of the European Union, and less than two hours from Paris, London and Amsterdam. Depending on your record and qualifications, you will be appointed to or tenured in one of the grades of the senior academic staff: assistant professor, associate professor, professor or full professor. In principle, junior researchers are appointed as assistant professor on the tenure track for a period of 5 years; after this period and contingent upon a positive evaluation, they are permanently appointed (or tenured) as associate professor. KU Leuven is well set to welcome foreign professors and their family and provides practical support with regard to immigration & administration, housing, childcare, learning Dutch, partner career coaching, … Vacancy: https://www.kuleuven.be/personeel/jobsite/jobs/55675790?hl=en&lang=en

SeminarNeuroscience

Understanding the complex behaviors of the ‘simple’ cerebellar circuit

Megan Carey
The Champalimaud Center for the Unknown, Lisbon, Portugal
Nov 13, 2024

Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.

SeminarNeuroscience

Visuomotor learning of location, action, and prediction

Markus Lappe
University of Muenster
Jun 17, 2024
SeminarNeuroscienceRecording

Cell-type-specific plasticity shapes neocortical dynamics for motor learning

Shouvik Majumder
Max Planck Florida Institute of Neuroscience, USA
Apr 17, 2024

How do cortical circuits acquire new dynamics that drive learned movements? This webinar will focus on mouse premotor cortex in relation to learned lick-timing and explore high-density electrophysiology using our silicon neural probes alongside region and cell-type-specific acute genetic manipulations of proteins required for synaptic plasticity.

SeminarNeuroscience

Sleep deprivation and the human brain: from brain physiology to cognition”

Ali Salehinejad
Leibniz Research Centre for Working Environment & Human Factors, Dortmund, Germany
Aug 28, 2023

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.

SeminarNeuroscience

Age differences in cortical network flexibility and motor learning ability

Kazumasa Uehara
Mar 9, 2023
SeminarNeuroscience

Targeting thalamic circuits rescues motor and mood deficits in PD mice

Dheeraj Roy
Feng Lab, Broad Institute of MIT and Harvard
Jan 31, 2023

Although bradykinesia, tremor, and rigidity are hallmark motor defects in Parkinson’s disease (PD) patients, they also experience motor learning impairments and non-motor symptoms such as depression. The neural basis for these different PD symptoms are not well understood. While current treatments are effective for locomotion deficits in PD, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking. We found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN), and nucleus accumbens (NAc). While PF-->CPu and PF-->STN circuits are critical for locomotion and motor learning respectively, inhibition of the PF-->NAc circuit induced a depression-like state. While chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation at PF-->STN synapses restored motor learning behavior in PD model mice. Furthermore, activation of NAc-projecting PF neurons rescued depression-like PD phenotypes. Importantly, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.

SeminarNeuroscience

Searching for the algorithms of iterative motor learning involving the cerebellum

Boris Barbour
Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Paris, France
Jan 10, 2023
SeminarNeuroscience

Multi-muscle TMS mapping assessment of the motor cortex reorganization after finger dexterity training

Milana Makarova
HSE University
Jun 8, 2022

It is widely known that motor learning leads to reorganization changes in the motor cortex. Recently, we have shown that using navigated transcranial magnetic stimulation (TMS) allows us to reliably trace interactions among motor cortical representations (MCRs) of different upper limb muscles. Using this approach, we investigate changes in the MCRs after fine finger movement training. Our preliminary results demonstrated that areas of the APB and ADM and their overlaps tended to increase after finger independence training. Considering the behavioral data, hand dexterity increased for both hands, but the amplitudes of voluntary contraction of the muscles for the APB and ADM did not change significantly. The behavioral results correspond with a previously described suggestion that hand strength and hand dexterity are not directly related as well as an increase in overlaps between MCRs of the trained muscles supports the idea that voluntary muscle relaxation is an active physiological process.

SeminarNeuroscience

Cognitive experience alters cortical involvement in navigation decisions

Charlotte Arlt
Harvard
Apr 21, 2022

The neural correlates of decision-making have been investigated extensively, and recent work aims to identify under what conditions cortex is actually necessary for making accurate decisions. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same task, revealing past learning as a critical determinant of whether cortex is necessary for decision tasks. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation-based visual discrimination task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multi-area calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron-neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in decision tasks.

SeminarNeuroscience

Learning binds novel inputs into functional synaptic clusters via spinogenesis

Nathan Hedrick
UCSD
Mar 29, 2022

Learning is known to induce the formation of new dendritic spines, but despite decades of effort, the functional properties of new spines in vivo remain unknown. Here, using a combination of longitudinal in vivo 2-photon imaging of the glutamate reporter, iGluSnFR, and correlated electron microscopy (CLEM) of dendritic spines on the apical dendrites of L2/3 excitatory neurons in the motor cortex during motor learning, we describe a framework of new spines' formation, survival, and resulting function. Specifically, our data indicate that the potentiation of a subset of clustered, pre-existing spines showing task-related activity in early sessions of learning creates a micro-environment of plasticity within dendrites, wherein multiple filopodia sample the nearby neuropil, form connections with pre-existing boutons connected to allodendritic spines, and are then selected for survival based on co-activity with nearby task-related spines. Thus, the formation and survival of new spines is determined by the functional micro-environment of dendrites. After formation, new spines show preferential co-activation with nearby task-related spines. This synchronous activity is more specific to movements than activation of the individual spines in isolation, and further, is coincident with movements that are more similar to the learned pattern. Thus, new spines functionally engage with their parent clusters to signal the learned movement. Finally, by reconstructing the axons associated with new spines, we found that they synapse with axons previously unrepresented in these dendritic domains, suggesting that the strong local co-activity structure exhibited by new spines is likely not due to axon sharing. Thus, learning involves the binding of new information streams into functional synaptic clusters to subserve the learned behavior.

SeminarNeuroscience

Primary Motor Cortex Circuitry in a Mouse Model of Parkinson’s Disease

Olivia Swanson
Dani lab, University of Pennsylvania
Feb 8, 2022

The primary motor cortex (M1) is a major output center for movement execution and motor learning, and its dysfunction contributes to the pathophysiology of Parkinson’s disease (PD). While human studies have indicated that a loss of midbrain dopamine neurons alters M1 activation, the mechanisms underlying this phenomenon remain unclear. Using a mouse model of PD, we uncovered several shifts within M1 circuitry following dopamine depletion, including impaired excitation by thalamocortical afferents and altered excitability. Our findings add to the growing body of literature highlighting M1 as a major contributor in PD, and provide targeted neural substrates for possible therapeutic interventions.

SeminarNeuroscienceRecording

NMC4 Short Talk: What can 140,000 Reaches Tell Us About Demographic Contributions to Visuomotor Adaptation?

Hrach Asmerian
University of California, Berkeley
Dec 1, 2021

Motor learning is typically assessed in the lab, affording a high degree of control over the task environment. However, this level of control often comes at the cost of smaller sample sizes and a homogenous pool of participants (e.g. college students). To address this, we have designed a web-based motor learning experiment, making it possible to reach a larger, more diverse set of participants. As a proof-of-concept, we collected 1,581 participants completing a visuomotor rotation task, where participants controlled a visual cursor on the screen with their mouse and trackpad. Motor learning was indexed by how fast participants were able to compensate for a 45° rotation imposed between the cursor and their actual movement. Using a cross-validated LASSO regression, we found that motor learning varied significantly with the participant’s age and sex, and also strongly correlated with the location of the target, visual acuity, and satisfaction with the experiment. In contrast, participants' mouse and browser type were features eliminated by the model, indicating that motor performance was not influenced by variations in computer hardware and software. Together, this proof-of-concept study demonstrates how large datasets can generate important insights into the factors underlying motor learning.

SeminarNeuroscienceRecording

NMC4 Short Talk: What can deep reinforcement learning tell us about human motor learning and vice-versa ?

Michele Garibbo
University of Bristol
Nov 30, 2021

In the deep reinforcement learning (RL) community, motor control problems are usually approached from a reward-based learning perspective. However, humans are often believed to learn motor control through directed error-based learning. Within this learning setting, the control system is assumed to have access to exact error signals and their gradients with respect to the control signal. This is unlike reward-based learning, in which errors are assumed to be unsigned, encoding relative successes and failures. Here, we try to understand the relation between these two approaches, reward- and error- based learning, and ballistic arm reaches. To do so, we test canonical (deep) RL algorithms on a well-known sensorimotor perturbation in neuroscience: mirror-reversal of visual feedback during arm reaching. This test leads us to propose a potentially novel RL algorithm, denoted as model-based deterministic policy gradient (MB-DPG). This RL algorithm draws inspiration from error-based learning to qualitatively reproduce human reaching performance under mirror-reversal. Next, we show MB-DPG outperforms the other canonical (deep) RL algorithms on a single- and a multi- target ballistic reaching task, based on a biomechanical model of the human arm. Finally, we propose MB-DPG may provide an efficient computational framework to help explain error-based learning in neuroscience.

SeminarNeuroscienceRecording

Activity dependent myelination: a mechanism for learning and regeneration?

Thóra Káradóttir
WT-MRC Stem Cell Institute, University of Cambridge
Oct 11, 2021

The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.

SeminarNeuroscienceRecording

Analogies in motor learning - acquisition and refinement of movement skills

Oryan Zacks
Tel Aviv University
May 26, 2021

Analogies are widely used by teachers and coaches of different movement disciplines, serving a role during the learning phase of a new skill, and honing one’s performance to a competitive level. In previous studies, analogies improved motor control in various tasks and across age groups. Our study aimed to evaluate the efficacy of analogies throughout the learning process, using kinematic measures for an in-depth analysis. We tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. The experiment included a drawing task, in which subjects were asked to connect four dots into a closed shape, and a mirror game, in which subjects tracked an oval that moved across the screen. After establishing a baseline, subjects were given an analogy, explicit instructions, or no further instruction. We compared their improvement in overall skill, accuracy, and speed. Subjects in the analogy and explicit groups improved their performance in the drawing task, while significant differences were found in the mirror game only for slow movements between analogy and controls. In conclusion, analogies are an important tool for teachers and coaches, and more research is needed to understand how to apply them for maximum results. They can rapidly change motor control and strategy but may also affect only some aspects of a movement and not others. Careful thought is needed to construct an effective analogy that encompasses relevant movement facets, as well as the practitioner’s personal background and experience.

SeminarNeuroscience

Neural control of motor actions: from whole-brain landscape to millisecond dynamics

Takashi Kawashima
Weizmann Institute
Apr 7, 2021

Animals control motor actions at multiple timescales. We use larval zebrafish and advanced optical microscopy to understand the underlying neural mechanisms. First, we examined the mechanisms of short-term motor learning by using whole-brain neural activity imaging. We found that the 5-HT system integrates the sensory outcome of actions and determines future motor patterns. Second, we established a method for recording spiking activity and membrane potential from a population of neurons during behavior. We identified putative motor command signals and internal copy signals that encode millisecond-scale details of the swimming dynamics. These results demonstrate that zebrafish provide a holistic and mechanistic understanding of the neural basis of motor control in vertebrate brains.

SeminarNeuroscienceRecording

Variability, maintenance and learning in birdsong

Adrienne Fairhall
University of Washington
Mar 30, 2021

The songbird zebra finch is an exemplary model system in which to study trial-and-error learning, as the bird learns its single song gradually through the production of many noisy renditions. It is also a good system in which to study the maintenance of motor skills, as the adult bird actively maintains its song and retains some residual plasticity. Motor learning occurs through the association of timing within the song, represented by sparse firing in nucleus HVC, with motor output, driven by nucleus RA. Here we show through modeling that the small level of observed variability in HVC can result in a network which is more easily able to adapt to change, and is most robust to cell damage or death, than an unperturbed network. In collaboration with Carlos Lois’ lab, we also consider the effect of directly perturbing HVC through viral injection of toxins that affect the firing of projection neurons. Following these perturbations, the song is profoundly affected but is able to almost perfectly recover. We characterize the changes in song acoustics and syntax, and propose models for HVC architecture and plasticity that can account for some of the observed effects. Finally, we suggest a potential role for inputs from nucleus Uva in helping to control timing precision in HVC.

SeminarNeuroscience

Contextual inference underlies the learning of sensorimotor repertoires

Daniel Wolpert
Columbia University
Oct 14, 2020

Humans spend a lifetime learning, storing and refining a repertoire of motor memories. However, it is unknown what principle underlies the way our continuous stream of sensori-motor experience is segmented into separate memories and how we adapt and use this growing repertoire. Here we develop a principled theory of motor learning based on the key insight that memory creation, updating, and expression are all controlled by a single computation – contextual inference. Unlike dominant theories of single-context learning, our repertoire-learning model accounts for key features of motor learning that had no unified explanation and predicts novel phenomena, which we confirm experimentally. These results suggest that contextual inference is the key principle underlying how a diverse set of experiences is reflected in motor behavior.

ePoster

Computational implications of motor primitives for cortical motor learning

Natalie Schieferstein, Paul Züge, Raoul-Martin Memmesheimer

Bernstein Conference 2024

ePoster

Contextual motor learning in birdsong reflects two distinct neural processes

COSYNE 2022

ePoster

Dual pathway architecture in songbirds boosts sensorimotor learning

COSYNE 2022

ePoster

Long-term motor learning creates structure within neural space that shapes motor adaptation

COSYNE 2022

ePoster

Long-term motor learning creates structure within neural space that shapes motor adaptation

COSYNE 2022

ePoster

Brain-wide neural dynamics accompanying fast goal-directed sensorimotor learning

Axel Bisi, Anthony Renard, Robin Dard, Sylvain Crochet, Carl Petersen

COSYNE 2025

ePoster

Contextual inference accounts for differences in motor learning under distinct curricula

Sabyasachi Shivkumar, James Ingram, Mate Lengyel, Daniel Wolpert

COSYNE 2025

ePoster

Dynamics of dendritic networks in motor learning of a skilled lever-pull task

Yonatan Kleerekoper, Mohammad Kurtam, Yitzhak Schiller, Hadas Benisty

COSYNE 2025

ePoster

Acute aerobic exercise at different intensities modulates motor learning performance and cortical excitability in healthy individuals

Hsiao-I Kuo, Jia-Ling Sun, Ming-Hsien Hsieh, Yi-Ting Lin, Michael Nitsche

FENS Forum 2024

ePoster

An all-optical approach to disentangle the role of intrinsic and synaptic plasticity in sensorimotor learning

Yuanxin Chen, Karim Oweiss

FENS Forum 2024

ePoster

Brain-wide neuronal dynamics underlying rapid goal-directed sensorimotor learning

Axel Bisi, Robin Dard, Anthony Renard, Sylvain Crochet, Carl C. H. Petersen

FENS Forum 2024

ePoster

Chronic in vivo two-photon imaging of cortical noradrenaline reveals altered spatiotemporal release dynamics during motor learning in a mouse model of autism

Nathaniel Jones, Simon Chen

FENS Forum 2024

ePoster

Cortical inactivation of Darpp-32 impairs synaptic and structural plasticity associated with motor learning

Clarissa Pisanò, Alina Aaltonen, Ayu Tamaki, Valeria Spanu, Gilberto Fisone, Emanuela Santini, Anders Borgkvist

FENS Forum 2024

ePoster

Disentangling error signals in Purkinje cell dendritic activity from their pre-synaptic climbing fiber inputs during sensory association and adaptive motor learning

Irina Scheer, Mario Prsa

FENS Forum 2024

ePoster

Two distinct inhibitory neuronal classes govern acquisition and recall of spinal sensorimotor learning

Charlotte Bichara, Simon Lavaud, Mattia D'Andola, ShuHao Yeh, Aya Takeoka

FENS Forum 2024

ePoster

Fast pathway-specific reorganization of barrel cortex underlying rapid goal-directed sensorimotor learning

Anthony Renard, Georgios Foustoukos, Maya Iuga, Sylvain Crochet, Carl Petersen

FENS Forum 2024

ePoster

How to improve motor learning in Drosophila

Radostina Lyutova, Andreas Ehweiner, Silvia Marcato, Björn Brembs

FENS Forum 2024

ePoster

Locomotor learning under climbing fiber control

Alice Geminiani, Ana Gonçalves, Hugo Gravato Marques, Francesco Costantino, Tatiana Silva, Merit Kruse, Megan R. Carey

FENS Forum 2024

ePoster

Motor learning-induced plasticity of cerebellar Purkinje neuron connectivity

Laura Pérez-Revuelta, Hannah M. Jahn, Kristiano Ndoci, Matteo Bergami

FENS Forum 2024

ePoster

Revealing the role of cervical ventral spinal interneurons projecting to the cerebellum in motor learning and control

Sofia Pimpinella, Candida Tufo, Martyn Goulding

FENS Forum 2024

ePoster

Sparse and unique functional innervation of barrel cortex onto single projection neurons in dorsal striatum and its plasticity after sensorimotor learning

Kenza Amroune, Maud Schauffhauser, Thomas Morvan, David Robbe, Ingrid Bureau

FENS Forum 2024

ePoster

Spine synapses newly formed during motor learning accompany more distant perisynaptic astrocytic processes compared to stable synapses in mouse primary motor cortex

Mohammed Youssef, Jaerin Sohn, Estilla Toth, Christopher K Salmon, Yasuo Kawaguchi, Yoshiyuki Kubota

FENS Forum 2024

ePoster

Targeted recombination in active populations to study sensorimotor learning

Lana Maria Smith, Anthony Renard, Marianne Nkosi, Sylvain Crochet, Carl C. H. Petersen

FENS Forum 2024

ePoster

Thalamic interaction of basal ganglia and cerebellar circuits during motor learning

Richard Roth, Fuu-Jiun Hwang, Michael Muniak, Charles Huang, Yue Sun, Tianyi Mao, Jun Ding

FENS Forum 2024