Topic spotlight
TopicWorld Wide

nav16

Discover seminars, jobs, and research tagged with nav16 across World Wide.
2 curated items2 Seminars
Updated about 3 years ago
2 items · nav16
2 results
SeminarNeuroscience

SCN8A (Nav1.6) and DEE:  mouse models and pre-clinical therapies

Miriam Meisler
University of Michigan
Sep 6, 2022

SCN8A encodes a major voltage-gated sodium channel expressed in CNS and PNS neurons.  Gain-of-function and loss-of-function mutations contribute to  human disorders, most notably Developmental and Epileptic Encephalophy (DEE). More than 600 affected individuals have been reported, with the most common  mechanism of de novo, gain-of-function mutations.  We have developed constitutive  and conditional models of gain- and loss- of function mutations in the mouse and  characterized the effects of on neuronal firing and neurological phenotypes.  Using CRE lines with cellular and developmental specificity, we have probed the effects of activating  mutant alleles in various classes of neurons in the developing and adult mouse.   Most recently, we are testing genetic therapies that reduce the expression  of gain-of-function mutant alleles.  We are comparing the effectiveness of allele specific  oligos (ASOs), viral delivery of shRNAs, and allele-specific targeting of mutant alleles  using Crispr/Cas9 in mouse models of DEE.

SeminarNeuroscienceRecording

NaV Long-term Inactivation Regulates Adaptation in Place Cells and Depolarization Block in Dopamine Neurons

Carmen Canavier
LSU Health Sciences Center, New Orleans
Feb 8, 2022

In behaving rodents, CA1 pyramidal neurons receive spatially-tuned depolarizing synaptic input while traversing a specific location within an environment called its place. Midbrain dopamine neurons participate in reinforcement learning, and bursts of action potentials riding a depolarizing wave of synaptic input signal rewards and reward expectation. Interestingly, slice electrophysiology in vitro shows that both types of cells exhibit a pronounced reduction in firing rate (adaptation) and even cessation of firing during sustained depolarization. We included a five state Markov model of NaV1.6 (for CA1) and NaV1.2 (for dopamine neurons) respectively, in computational models of these two types of neurons. Our simulations suggest that long-term inactivation of this channel is responsible for the adaptation in CA1 pyramidal neurons, in response to triangular depolarizing current ramps. We also show that the differential contribution of slow inactivation in two subpopulations of midbrain dopamine neurons can account for their different dynamic ranges, as assessed by their responses to similar depolarizing ramps. These results suggest long-term inactivation of the sodium channel is a general mechanism for adaptation.