Neurobiology
neurobiology
SISSA Neuroscience department
The Neuroscience Department of the International School for Advanced Studies (SISSA; https://www.sissa.it/research/neuroscience) invites expressions of interest from scientists from various fields of Neuroscience for multiple tenure-track positions with anticipated start in 2025. Ongoing neuroscience research at SISSA includes cognitive neuroscience, computational and theoretical neuroscience, systems neuroscience, molecular and cellular research as well as genomics and genetics. The Department intends to potentiate its activities in these fields and to strengthen cross-field interactions. Expressions of interest from scientists in any of these fields are welcome. The working and teaching language of SISSA is English. This is an equal opportunity career initiative and we encourage applications from qualified women, racial and ethnic minorities, and persons with disabilities. Candidates should have a PhD in a relevant field and a proven record of research achievements. A clear potential to promote and lead research activities, and a specific interest in training and supervising PhD students is essential. Interested colleagues should present an original and innovative plan for their independent future research. We encourage both proposals within existing fields at SISSA as well as novel ideas outside of those or spanning various topics and methodologies of Neuroscience. SISSA is an international school promoting basic and applied research in Neuroscience, Mathematics and Physics and dedicated to the training of PhD students. Lab space and other resources will be commensurate with the appointment. Shared facilities include cell culture rooms, viral vector facilities, confocal microscopes, animal facilities, molecular and biochemical facilities, human cognition labs with EEG, TMS, and eye tracking systems, mechatronics workshop, and computing facilities. Agreements with national and international MRI scanning facilities are also in place. SISSA encourages fruitful exchanges between neuroscientists and other researchers including data scientists, physicists and mathematicians. Interested colleagues are invited to send a single pdf file including a full CV, a brief description of past and future research interests (up to 1,000 words), and the names of three referees to neuro.search@sissa.it. Selected candidates will be invited for an online or in-person seminar and 1- on-1 meetings in summer/autumn 2024. Deadline: A first evaluation round will consider all applications submitted before 15 May 2024. Later applications might be considered if no suitable candidates have been identified yet.
Department of Biological Science
The Department of Biological Science at The University of Tulsa invites applications for two Postdoctoral Fellow positions in Integrative Biology and Neuroscience. We seek creative and interactive individuals who would like to advance their research programs in these areas, while also obtaining training and experience in teaching. Fellows will devote 60% effort to research and 40% to teaching. Research topics are flexible within the realms of Integrative Biology and Neuroscience, but should have overlap with the expertise of one of the faculty mentors for these positions (listed below). We anticipate a Fall 2023 start date for these positions. The successful applicant is expected to have a Ph.D. in Biological Science or a related field prior to starting. Interested applicants should submit: (1) A cover letter stating possible areas of research interest and how this Postdoctoral Fellowship will contribute to your career trajectory. (2) Curriculum Vitae. (3) Pdfs of up to two representative publications. (4) Names and complete contact information for three references. We encourage applicants to contact one or more of the potential mentors before applying. For the Integrative Biology Postdoctoral Fellowship: Akhtar Ali (akhtar-ali@utulsa.edu) – Plant Virology http://akhtarvirologylab.utulsa.edu Ron Bonett (ron-bonett@utulsa.edu) – Amphibian Evolution and Development https://ronbonett.weebly.com Charles Brown (charles-brown@utulsa.edu) – Avian Behavioral Ecology https://www.cliffswallow.org Mark Buchheim (mark-buchheim@utulsa.edu) – Evolution of Algae https://buchheimlab.weebly.com Mohamed Fakhr (mohamed-fakhr@utulsa.edu) – Bacterial Genomics https://engineering.utulsa.edu/biological-science/faculty/profile/mohamed-fakhr/ Alex Kingston (alex-kingston@utulsa.edu) – Invertebrate Neurobiology https://www.kingston-lab.com Katie Mika (kmmika12@gmail.com) – Vertebrate Molecular Evolution https://www.katelynmika.com/research Matt Toomey (mbt6332@utulsa.edu) – Mechanisms and Evolution of Coloration and Vision http://6045f9f8cf.url-de-test.ws/research.html For the Neuroscience Postdoctoral Fellowship (also listed above): Ron Bonett (ron-bonett@utulsa.edu) – Amphibian Evolution and Development Alex Kingston (alex-kingston@utulsa.edu) – Invertebrate Neurobiology Katie Mika (kmmika12@gmail.com) – Vertebrate Molecular Evolution Matt Toomey (mbt6332@utulsa.edu) – Mechanisms and Evolution of Coloration and Vision Applications should be submitted electronically to: Integrative Biology Postdoctoral Fellowship (BiologyPostdoc_search@utulsa.edu) or the Neuroscience Postdoctoral Fellowship (NeuroPostdoc_search@utulsa.edu). Please indicate if you would like to be considered for both positions. For full consideration applications should be received by 12-May-2023. The University of Tulsa is an Equal Opportunity Employer and is especially interested in candidates who can contribute to the diversity and excellence of the academic community through their research, teaching and/or service
Doctor Mónica Sousa
i3S is looking to recruit a senior researcher with an established international reputation in Neural Cell Biology and strong expertise in securing, managing and leading collaborative research projects and teams/institutional units.
Dr. Adam Nelson
The Nelson laboratory (https://www.nelsonlabuwyoming.com) in the Zoology and Physiology Department and the Sensory Biology Center is seeking to hire a laboratory technician to assist with the organization and management of a molecular neurobiology research group. As a full-time staff member, you will assist undergraduate and graduate students on projects related to animal behavior and neuroscience and will help develop future projects. You will help oversee the group’s animal colony, equipment, and reagent inventories. Tasks might include animal cranial surgery and dissection, histology, animal husbandry, genotyping, organizing laboratory space, and curating behavioral and physiological data. This position is suitable for those seeking additional research experience before applying to graduate school or other careers in research. A minimum two-year commitment is strongly encouraged. We are looking for candidates that are energetic, organized, and have an interest in behavioral ecology or molecular neurobiology. Experience in working with rodent models, molecular biology, and/or bioinformatics is preferred but not required. The starting salary is approximately $40,000/year with benefits, depending on the candidate’s prior job experience and educational training. The start date is flexible, but ideally the successful candidate would begin between April 2021 and June 2021. Minimum qualifications for this position include a Bachelor’s degree in Biology, Neuroscience, Physiology, Zoology, or related field, a demonstrated knowledge of either neuroscience or animal behavior, and excellent organizational skills and attention to detail. Desired qualifications include research experience with rodents and knowledge of molecular biology techniques. Required application materials include a cover Letter, Resume/CV, and contact information for three references. Inquiries about the position should be sent to Drs Adam Nelson (anelso74@uwyo.edu) and Nicole Bedford (bedford@hms.harvard.edu). Applications can be submitted online at https://uwyo.taleo.net/careersection/00_ex/jobdetail.ftl?job=21000277&lang=en UW is an Affirmative Action/Equal Opportunity Educator and Employer. We are committed to a multicultural environment and strongly encourage applications from women, minorities, veterans and persons with disabilities. The University of Wyoming is located in Laramie, a town of 30,000 in the heart of the Rocky Mountain West. In a high mountain valley near the Colorado border, Laramie offers both outstanding recreational opportunities and close proximity to Colorado’s Front Range, including Denver and Fort Collins. This beautiful mountain landscape offers outdoor enjoyment in all seasons, with over 300 days of sunshine annually (see http://visitlaramie.org/). Together with the University of Wyoming’s state-of-the-art research facilities, Laramie provides a terrific opportunity to conduct cutting edge research while living in a small, affordable, and vibrant community.
IMPRS for Brain & Behavior
Join our unique transatlantic PhD program in neuroscience! The International Max Planck Research School (IMPRS) for Brain and Behavior is a unique transatlantic collaboration between two Max Planck Neuroscience institutes – the Max Planck-associated research center caesar and the Max Planck Florida Institute for Neuroscience – and the partner universities, University of Bonn and Florida Atlantic University. It offers a completely funded international PhD program in neuroscience in either Bonn, Germany, or Jupiter, Florida. We offer an exciting opportunity to outstanding Bachelor's and/or Master's degree holders (or equivalent) from any field (life sciences, mathematics, physics, computer science, engineering, etc.) to be immersed in a stimulating environment that provides novel technologies to elucidate the function of brain circuits from molecules to animal behavior. The comprehensive and diverse expertise of the faculty in the exploration of brain-circuit function using advanced imaging and optogenetic techniques combined with comprehensive training in fundamental neurobiology will provide students with an exceptional level of knowledge to pursue a successful independent research career. Apply to Bonn, Germany by November 15, 2020 or to Florida, USA by December 1, 2020!
Jens Peter Lindemann
The PhD project is part of the DFG-funded project 'Cue integration by bumblebees during navigation in uncertain environments with multiple goal options: Behavioural analysis in virtual reality and computational modelling' in an international research team. Bumblebees can be trained to prefer certain places or objects in a virtual environment through appropriate rewarding. In a close integration of two PhD projects, one with a focus on VR behaviour experiments and the other focussing on computational modelling and simulation, we are investigating the mechanisms underlying these learning and orientation performances. The applicant is expected to design and implement models for behavioral control of bumblebees, test them in computer simulations, contribute to VR experiments with bumblebees, and collaborate intensively with other project participants.
Jorge Jaramillo
The Grossman Center for Quantitative Biology and Human Behavior at the University of Chicago seeks outstanding applicants for multiple postdoctoral positions in computational and theoretical neuroscience. Appointees will join as Grossman Center Postdoctoral Fellows, with the freedom to work with any of its faculty members. We especially welcome applicants who develop computational models and machine learning analysis methods to study the brain at the circuits, systems, or cognitive levels. The current faculty members of the Grossman Center to work with are: Brent Doiron, Jorge Jaramillo, and Ramon Nogueira. Appointees will have access to state-of-the-art facilities and multiple opportunities for collaboration with exceptional experimental labs within the Department of Neurobiology, as well as other labs from the departments of Physics, Computer Sciences, and Statistics. The Grossman Center offers competitive postdoctoral salaries in the vibrant and international city of Chicago, and a rich intellectual environment that includes the Argonne National Laboratory and the Data Science Institute. The Grossman Center is currently engaged in a major expansion that includes the incorporation of several new faculty members in the next few years.
Antonio C. Roque
The Research, Innovation and Dissemination Center for Neuromathematics (NeuroMat), hosted by the University of São Paulo (USP), Brazil, and funded by the São Paulo Research Foundation (FAPESP), is offering post-doctoral fellowships for recent PhDs with outstanding research potential. The fellowship will involve collaborations with research teams and laboratories associated with NeuroMat. The research to be developed by the post-doc fellow shall be strictly related to ongoing research lines developed by the NeuroMat team that can be consulted at our website. The project may be developed at the laboratories of USP, campuses of São Paulo or Ribeirão Preto, or at UNICAMP, Campinas, in person.
Mingbo Cai
The Cognitive and Behavioral Neuroscience Division at Department of Psychology, University of Miami seeks highly motivated and creative Ph.D. students in our efforts to understand the brain and mind. Applications for entry in the Fall of 2025 are now being accepted, with a deadline of December 1st. For details, including contact information, please visit https://www.psy.miami.edu/graduate/how-to-apply/index.html. The Cognitive and Behavioral Neuroscience Division at Department of Psychology, University of Miami offers a unique program of study spanning neurobiology, behavior, computational and brain imaging research on topics of emotion, mindfulness, learning and memory, mental disorders and health. A listing of faculty affiliated with the division can be found online at https://www.psy.miami.edu/research/faculty-research/index.html and below.
Investigating the Neurobiology and Neurophysiology of Psilocybin Using Drosophila melanogaster as a Model System
The cellular phase of Alzheimer’s Disease and the path towards therapies
Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics
Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.
Dark Matter in the Locus coeruleus - Neuromelanin in Health and Disease
Examining dexterous motor control in children born with a below elbow deficiency
Brain Emulation Challenge Workshop
Brain Emulation Challenge workshop will tackle cutting-edge topics such as ground-truthing for validation, leveraging artificial datasets generated from virtual brain tissue, and the transformative potential of virtual brain platforms, such as applied to the forthcoming Brain Emulation Challenge.
The Neurobiology of the Addicted Brain
Brain-heart interactions at the edges of consciousness
Various clinical cases have provided evidence linking cardiovascular, neurological, and psychiatric disorders to changes in the brain-heart interaction. Our recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. Furthermore, the presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics can provide further insights into the physiological state of the patient following severe brain injury. These developments on methodologies to analyze brain-heart interactions open new avenues for understanding neural functioning at a large-scale level, uncovering that peripheral bodily activity can influence brain homeostatic processes, cognition, and behavior.
Astrocyte reprogramming / activation and brain homeostasis
Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.
How fly neurons compute the direction of visual motion
Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Our results obtained in the fruit fly Drosophila demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.
PET imaging in brain diseases
Talk 1. PET based biomarkers of treatment efficacy in temporal lobe epilepsy A critical aspect of drug development involves identifying robust biomarkers of treatment response for use as surrogate endpoints in clinical trials. However, these biomarkers also have the capacity to inform mechanisms of disease pathogenesis and therapeutic efficacy. In this webinar, Dr Bianca Jupp will report on a series of studies using the GABAA PET ligand, [18F]-Flumazenil, to establish biomarkers of treatment response to a novel therapeutic for temporal lobe epilepsy, identifying affinity at this receptor as a key predictor of treatment outcome. Dr Bianca Jupp is a Research Fellow in the Department of Neuroscience, Monash University and Lead PET/CT Scientist at the Alfred Research Alliance–Monash Biomedical Imaging facility. Her research focuses on neuroimaging and its capacity to inform the neurobiology underlying neurological and neuropsychiatric disorders. Talk 2. The development of a PET radiotracer for reparative microglia Imaging of neuroinflammation is currently hindered by the technical limitations associated with TSPO imaging. In this webinar, Dr Lucy Vivash will discuss the development of PET radiotracers that specifically image reparative microglia through targeting the receptor kinase MerTK. This includes medicinal chemistry design and testing, radiochemistry, and in vitro and in vivo testing of lead tracers. Dr Lucy Vivash is a Research Fellow in the Department of Neuroscience, Monash University. Her research focuses on the preclinical development and clinical translation of novel PET radiotracers for the imaging of neurodegenerative diseases.
Mechanisms and Roles of Fast Dopamine Signaling
Dopamine is a neuromodulator that codes information on various time scales. I will discuss recent progress on the identification of fast release mechanisms for dopamine in the mouse striatum. I will present data on triggering mechanisms of dopamine release and evaluate its roles in striatal regulation. In the long-term, our work will allow for a better understanding of the mechanisms and time scales of dopamine coding in health and disease.
How do protein-RNA condensates form and contribute to disease?
In recent years, it has become clear that intrinsically disordered regions (IDRs) of RBPs, and the structure of RNAs, often contribute to the condensation of RNPs. To understand the transcriptomic features of such RNP condensates, we’ve used an improved individual nucleotide resolution CLIP protocol (iiCLIP), which produces highly sensitive and specific data, and thus enables quantitative comparisons of interactions across conditions (Lee et al., 2021). This showed how the IDR-dependent condensation properties of TDP-43 specify its RNA binding and regulatory repertoire (Hallegger et al., 2021). Moreover, we developed software for discovery and visualisation of RNA binding motifs that uncovered common binding patterns of RBPs on long multivalent RNA regions that are composed of dispersed motif clusters (Kuret et al, 2021). Finally, we used hybrid iCLIP (hiCLIP) to characterise the RNA structures mediating the assembly of Staufen RNPs across mammalian brain development, which demonstrated the roles of long-range RNA duplexes in the compaction of long 3’UTRs. I will present how the combined analysis of the characteristics of IDRs in RBPs, multivalent RNA regions and RNA structures is required to understand the formation and functions of RNP condensates, and how they change in diseases.
Charting the Proteome Landscape of Diverse Synapses In Vivo
‘How development sculpts hippocampal circuits’
Interdisciplinary College
The Interdisciplinary College is an annual spring school which offers a dense state-of-the-art course program in neurobiology, neural computation, cognitive science/psychology, artificial intelligence, machine learning, robotics and philosophy. It is aimed at students, postgraduates and researchers from academia and industry. This year's focus theme "Flexibility" covers (but not be limited to) the nervous system, the mind, communication, and AI & robotics. All this will be packed into a rich, interdisciplinary program of single- and multi-lecture courses, and less traditional formats.
Acting on our instincts: understanding emotional decision-making
Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries
GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease. Our web pages for reference: https://devneuro.org.uk/marinlab/ & https://devneuro.org.uk/rico/default
Towards an inclusive neurobiology of language
Understanding how our brains process language is one of the fundamental issues in cognitive science. In order to reach such understanding, it is critical to cover the full spectrum of manners in which humans acquire and experience language. However, due to a myriad of socioeconomic factors, research has disproportionately focused on monolingual English speakers. In this talk, I present a series of studies that systematically target fundamental questions about bilingual language use across a range of conversational contexts, both in production and comprehension. The results lay the groundwork to propose a more inclusive theory of the neurobiology of language, with an architecture that assumes a common selection principle at each linguistic level and can account for attested features of both bilingual and monolingual speech in, but crucially also out of, experimental settings.
Determinants of the transition to compulsion in addiction
Single-cell delineation of lineage and genetic identity in the mouse forebrain
Neurobiology of Narcolepsy: effects of the oxytocin system on cataplexy
Linking valence and anxiety in a mouse insula-amygdala circuit
Promising Neuroimmune Targets for Alcohol Use Disorder Pathology
Selectively Silencing Nociceptor Sensory Neurons
Local anesthetics decrease the excitability of all neurons by blocking voltage-gated sodium channels non-selectively. We have developed a technology to silence only those sensory neurons – the nociceptors – that trigger pain, itch, and cough. I will tell you why and how we devised the strategy, the way we showed that it works, and will also discuss its implications for treating multiple human disorders.
Cellular mechanisms of conscious processing
Recent breakthroughs in neurobiology indicate that time is ripe to understand the cellular-level mechanisms of conscious experience. Accordingly, we have recently proposed that conscious processing depends on the integration between top-down and bottom-up information streams and that there exists a specific cellular mechanism that gates this integration. I will first describe this cellular mechanism and demonstrate how it controls signal propagation within the thalamocortical system. Then I will show how this cellular-level mechanism provides a natural explanation for why conscious experience is modulated by top-down processing. Besides shining new light on the neural basis of consciousness, this perspective unravels the mechanisms of internally generated perception, such as dreams, imagery, and hallucinations.
Nr4a1 and chromatin bivalency in cocaine pathophysiology
Dual lecture: Diversification of cortical inhibitory circuits & Molecular programs orchestrating the wiring of inhibitory circuitries
GABAergic interneurons play crucial roles in the regulation of neural activity in the cerebral cortex. In this Dual Lecture, Prof Oscar Marín and Prof Beatriz Rico will discuss several aspects of the formation of inhibitory circuits in the mammalian cerebral cortex. Prof. Marín will provide an overview of the mechanisms regulating the generation of the remarkable diversity of GABAergic interneurons and their ultimate numbers. Prof. Rico will describe the molecular logic through which specific pyramidal cell-interneuron circuits are established in the cerebral cortex, and how alterations in some of these connectivity motifs might be liked to disease.
Migraine: a disorder of excitatory-inhibitory balance in multiple brain networks? Insights from genetic mouse models of the disease
Migraine is much more than an episodic headache. It is a complex brain disorder, characterized by a global dysfunction in multisensory information processing and integration. In a third of patients, the headache is preceded by transient sensory disturbances (aura), whose neurophysiological correlate is cortical spreading depression (CSD). The molecular, cellular and circuit mechanisms of the primary brain dysfunctions that underlie migraine onset, susceptibility to CSD and altered sensory processing remain largely unknown and are major open issues in the neurobiology of migraine. Genetic mouse models of a rare monogenic form of migraine with aura provide a unique experimental system to tackle these key unanswered questions. I will describe the functional alterations we have uncovered in the cerebral cortex of genetic mouse models and discuss the insights into the cellular and circuit mechanisms of migraine obtained from these findings.
Sex Differences in Addiction: lessons from animal models
Transcriptional and Epigenetic Mechanisms of Addiction
What Art can tell us about the Brain
Artists have been doing experiments on vision longer than neurobiologists. Some major works of art have provided insights as to how we see; some of these insights are so undamental that they can be understood in terms of the underlying neurobiology. For example, artists have long realized that color and luminance can play independent roles in visual perception. Picasso said, "Colors are only symbols. Reality is to be found in luminance alone." This observation has a parallel in the functional subdivision of our visual systems, where color and luminance are processed by the evolutionarily newer, primate-specific What system, and the older, colorblind, Where (or How) system. Many techniques developed over the centuries by artists can be understood in terms of the parallel organization of our visual systems. I will explore how the segregation of color and luminance processing are the basis for why some Impressionist paintings seem to shimmer, why some op art paintings seem to move, some principles of Matisse's use of color, and how the Impressionists painted "air". Central and peripheral vision are distinct, and I will show how the differences in resolution across our visual field make the Mona Lisa's smile elusive, and produce a dynamic illusion in Pointillist paintings, Chuck Close paintings, and photomosaics. I will explore how artists have figured out important features about how our brains extract relevant information about faces and objects, and I will discuss why learning disabilities may be associated with artistic talent.
The mu opioid receptor and addiction
Selectively Silencing Nociceptor Sensory Neurons
Local anesthetics decrease the excitability of all neurons by blocking voltage-gated sodium channels non-selectively. We have developed a technology to silence only those sensory neurons – the nociceptors – that trigger pain, itch, and cough. I will tell you why and how we devised the strategy, the way we showed that it works, and will also discuss its implications for treating multiple human disorders.
Cluster Headache: Improving Therapy for the Worst Pain Experienced by Humans
Cluster headache is a brain disorder dominated clinically by dreadful episodes of excruciating pain with a circadian pattern and most often focused in bouts with circannual periodicity. As we have understood its neurobiology new therapies, including those directed at calcitonin gene-related peptide, are helpful improve the lives of sufferers.
In-Love with Addiction Neuroscience
In this talk series, addiction neuroscientists from across the world share their personal stories/experiences on the beauty of addiction neuroscience and how/why they have decided to invest their scientific life in this field. We hope that this talk series would encourage and support a new generation of young and passionate addiction neuroscientists in different countries to revolutionize the field of addiction medicine.
Multisensory encoding of self-motion in the retrosplenial cortex and beyond
In order to successfully navigate through the environment, animals must accurately estimate the status of their motion with respect to the surrounding scene and objects. In this talk, I will present our recent work on how retrosplenial cortical (RSC) neurons combine vestibular and visual signals to reliably encode the direction and speed of head turns during passive motion and active navigation. I will discuss these data in the context of RSC long-range connectivity and further show our ongoing work on building population-level models of motion representation across cortical and subcortical networks.
How do I know my rat is addicted?
D1 and D2 Accumbens Neurons May not be Who You Think They Are: Distinct tetrapartite synaptic plasticity regulating drug relapse
Deciding to stop deciding: A cortical-subcortical circuit for forming and terminating a decision
The neurobiology of decision-making is informed by neurons capable of representing information over time scales of seconds. Such neurons were initially characterized in studies of spatial working memory, motor planning (e.g., Richard Andersen lab) and spatial attention. For decision-making, such neurons emit graded spike rates, that represent the accumulated evidence for or against a choice. They establish the conduit between the formation of the decision and its completion, usually in the form of a commitment to an action, even if provisional. Indeed, many decisions appear to arise through an accumulation of noisy samples of evidence to a terminating threshold, or bound. Previous studies show that single neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence when monkeys make decisions about the direction of random dot motion (RDM) and express their decision with a saccade to the neuron’s preferred target. The mechanism of termination (the bound) is elusive. LIP is interconnected with other brain regions that also display decision-related activity. Whether these areas play roles in the decision process that are similar to or fundamentally different from that of LIP is unclear. I will present new unpublished experiments that begin to resolve these issues by recording from populations of neurons simultaneously in LIP and one of its primary targets, the superior colliculus (SC), while monkeys make difficult perceptual decisions.
Neuroimmune and Glutamatergic Mechanisms of Nicotine Addiction
In-Love with Addiction Neuroscience
In this talk series, addiction neuroscientists from across the world share their personal stories/experiences on the beauty of addiction neuroscience and how/why they have decided to invest their scientific life in this field. We hope that this talk series would encourage and support a new generation of young and passionate addiction neuroscientists in different countries to revolutionize the field of addiction medicine.
Tectal and Pretectal Circuits of the Visual Thalamus
Habenular synaptic strength and neuronal dynamics for approach-avoidance behaviours
Acetylcholine dynamics in the basolateral amygdala during reward learning
Neural mechanisms of navigation behavior
The regions of the insect brain devoted to spatial navigation are beautifully orderly, with a remarkably precise pattern of synaptic connections. Thus, we can learn much about the neural mechanisms of spatial navigation by targeting identifiable neurons in these networks for in vivo patch clamp recording and calcium imaging. Our lab has recently discovered that the "compass system" in the Drosophila brain is anchored to not only visual landmarks, but also the prevailing wind direction. Moreover, we found that the compass system can re-learn the relationship between these external sensory cues and internal self-motion cues, via rapid associative synaptic plasticity. Postsynaptic to compass neurons, we found neurons that conjunctively encode heading direction and body-centric translational velocity. We then showed how this representation of travel velocity is transformed from body- to world-centric coordinates at the subsequent layer of the network, two synapses downstream from compass neurons. By integrating this world-centric vector-velocity representation over time, it should be possible for the brain to form a stored representation of the body's path through the environment.
Ready, Set, Go! Neural circuits underlying cognitive control of behavior
Anatomical and functional characterization of the neuronal circuits underlying ejaculation
During sexual behavior, copulation related sensory information and modulatory signals from the brain must be integrated and converted into the motor and secretory outputs that characterize ejaculation (Lenschow and Lima, Current Opinion in Neurobiology, 2020). Studies in humans and rats suggest the existence of interneurons in the lumbar spinal cord that mediates that step: the spinal ejaculation generator (SEG). My work aimed at gaining mechanistic insights about the neuronal circuits controlling ejaculation thereby applying cutting-edge techniques. More specifically, we mapped anatomically and functionally the spinal circuit for ejaculation starting from the main muscle being involved in sperm expulsion: the bulbospongiosus muscle (BSM). Combining viral tracing strategies with electrophysiology, we specifically show that the BSM motoneurons receive direct synaptic input from a group of interneurons located in between lumbar segment 2 and 3 and expressing the peptide galanin. Electrically and optogenetically activating the galanin positive cells (the SEG) lead to the activation of the motoneurons innervating the BSM and the muscle itself. Finally, inhibition of SEG cells using DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in sexual behaving animals is currently conducted to reveal whether ejaculation can be prevented.
The unexpected precision of an activity-dependent transcription factor
Mitochondrial mechanisms in psychostimulant and opioid action
In-Love with Addiction Neuroscience
In this talk series, addiction neuroscientists from across the world share their personal stories/experiences on the beauty of addiction neuroscience and how/why they have decided to invest their scientific life in this field. We hope that this talk series would encourage and support a new generation of young and passionate addiction neuroscientists in different countries to revolutionize the field of addiction medicine.
The neuroscience of color and what makes primates special
Among mammals, excellent color vision has evolved only in certain non-human primates. And yet, color is often assumed to be just a low-level stimulus feature with a modest role in encoding and recognizing objects. The rationale for this dogma is compelling: object recognition is excellent in grayscale images (consider black-and-white movies, where faces, places, objects, and story are readily apparent). In my talk I will discuss experiments in which we used color as a tool to uncover an organizational plan in inferior temporal cortex (parallel, multistage processing for places, faces, colors, and objects) and a visual-stimulus functional representation in prefrontal cortex (PFC). The discovery of an extensive network of color-biased domains within IT and PFC, regions implicated in high-level object vision and executive functions, compels a re-evaluation of the role of color in behavior. I will discuss behavioral studies prompted by the neurobiology that uncover a universal principle for color categorization across languages, the first systematic study of the color statistics of objects and a chromatic mechanism by which the brain may compute animacy, and a surprising paradoxical impact of memory on face color. Taken together, my talk will put forward the argument that color is not primarily for object recognition, but rather for the assessment of the likely behavioral relevance, or meaning, of the stuff we see.
Dopamine release in the nucleus accumbens core signals perceived saliency
From genetics to neurobiology through transcriptomic data analysis
Over the past years, genetic studies have uncovered hundreds of genetic variants to be associated with complex brain disorders. While this really represents a big step forward in understanding the genetic etiology of brain disorders, the functional interpretation of these variants remains challenging. We aim to help with the functional characterization of variants through transcriptomic data analysis. For instance, we rely on brain transcriptome atlases, such as Allen Brain Atlases, to infer functional relations between genes. One example of this is the identification of signaling mechanisms of steroid receptors. Further, by integrating brain transcriptome atlases with neuropathology and neuroimaging data, we identify key genes and pathways associated with brain disorders (e.g. Parkinson's disease). With technological advances, we can now profile gene expression in single-cells at large scale. These developments have presented significant computational developments. Our lab focuses on developing scalable methods to identify cells in single-cell data through interactive visualization, scalable clustering, classification, and interpretable trajectory modelling. We also work on methods to integrate single-cell data across studies and technologies.
Cellular mechanisms that control state-dependent modulation of sensory processing and plasticity in the cortex
Addiction to cocaine: How you take the drug is more important than how much
Addiction: the compulsive pursuit of a behaviour, not only the drug
New genetically encoded sensors to track addiction-relevant neuromodulators in vivo
The Impact of Racism-related Stress on Neurobiological Systems in Black Americans”
Black Americans experience diverse racism-related stressors throughout the lifespan. Disproportionately high trauma exposure, economic disadvantage, explicit racism and inequitable treatment are stressors faced by many Black Americans. These experiences have a cumulative negative impact on psychological and physical health. However, little is understood about how experiences of racism, such as discrimination, can mediate health outcomes via their effects on neurobiology. I will present clinical, behavioral, physiological and neurobiological data from Black American participants in the Grady Trauma Project, a longstanding study of trauma conducted in inner-city Atlanta. These data will be discussed in the context of both risk and resilience/adaptation perspectives. Finally, recommendations for future clinical neuroscience research and targets for intervention in marginalized populations will be discussed.
Striatal mechanisms underlying vulnerability for punishment-resistant alcohol drinking
Involvement of peptidergic Edinger-Westphal nucleus in the neurobiology of migraine
FENS Forum 2024