Theory of Mind
theory of mind
Angelo Cangelosi
Two Research Fellows in Robotics / Human Robot Interaction are required for a period of 12 months each to work on the UKRI/EPSRC project “Trustworthy Autonomous Systems Node on Trust”. This is a collaborative project of the University of Manchester’s Cognitive Robotics Lab with Heriot-Watt University Edinburgh and Imperial College London. The candidates will carry out research on robot cognitive architectures for theory of mind and trust, using a combination of machine learning and robotics methodologies, and/or human-robot interaction for trust. The research fellows will be working collaboratively as part of the Cognitive Robotics Lab at the Department of Computer Science at the University of Manchester under the supervision of Professor Angelo Cangelosi. Close collaboration with the other project partners will also be required.
N/A
Two Postdoctoral Research Associates in Neurorobotics are required for a period of 48 months to work on the Horizon/InnovateUK project “PRIMI: Performance in Robots Interaction via Mental Imagery. This is a collaborative project of the University of Manchester’s Cognitive Robotics Lab with various academic and industry partners in the UK and Europe. PRIMI will synergistically combine research and development in neurophysiology, psychology, machine intelligence, cognitive mechatronics, neuromorphic engineering, and humanoid robotics to build developmental models of higher-cognition abilities – mental imagery, abstract reasoning, and theory of mind – boosted by energy- efficient event-driven computing and sensing. You will carry out research on robot neuro/cognitive architectures, using a combination of machine learning and robotics methodologies. You will be working collaboratively as part of the Cognitive Robotics Lab at the Department of Computer Science at the University of Manchester under the supervision of Professor Angelo Cangelosi.
Angelo Cangelosi
A Postdoctoral Research Associates in Neuromorphic Systems and/or Computational Neuroscience for robotics is required for a period of 3.5 years to work on the Horizon/InnovateUK project “PRIMI: Performance in Robots Interaction via Mental Imagery. This is a collaborative project of the University of Manchester’s Cognitive Robotics Lab with various academic and industry partners in the UK and Europe. PRIMI will synergistically combine research and development in neurophysiology, psychology, machine intelligence, cognitive mechatronics, neuromorphic engineering, and humanoid robotics to build developmental models of higher-cognition abilities – mental imagery, abstract reasoning, and theory of mind – boosted by energy-efficient event-driven computing and sensing. You will carry out research on the design of neuromorphic systems models for robotics. The postdoc will work collaboratively with the other postdocs and PhD students in the PRIMI project. This post requires expertise in computational neuroscience (e.g. spiking neural networks) for robotics and/or neuromorphic systems.
Dominik R Bach
We are looking to hire a highly motivated and driven postdoctoral researcher to understand human cooperation & competition using virtual reality. This ambitious project combines concepts from behavioural game theory and theory of mind in an existing VR setup, and is supported by a dedicated VR developer. The goal of the position is to understand human cooperation in dangerous situations. The role includes conceptual design of classical game-theoretic dilemmata in naturalistic VR scenarios with experimentally controlled non-verbal information channels, conducting and analysing experiments using motion capture data and an established R package (https://github.com/bachlab/vrthreat), and publication of research and development results.
Spatial matching tasks for insect minds: relational similarity in bumblebees
Understanding what makes human unique is a fundamental research drive for comparative psychologists. Cognitive abilities such as theory of mind, cooperation or mental time travel have been considered uniquely human. Despite empirical evidence showing that animals other than humans are able (to some extent) of these cognitive achievements, findings are still heavily contested. In this context, being able to abstract relations of similarity has also been considered one of the hallmarks of human cognition. While previous research has shown that other animals (e.g., primates) can attend to relational similarity, less is known about what invertebrates can do. In this talk, I will present a series of spatial matching tasks that previously were used with children and great apes and that I adapted for use with wild-caught bumblebees. The findings from these studies suggest striking similarities between vertebrates and invertebrates in their abilities to attend to relational similarity.
Social Curiosity
In this lecture, I would like to share with the broad audience the empirical results gathered and the theoretical advancements made in the framework of the Lendület project entitled ’The cognitive basis of human sociality’. The main objective of this project was to understand the mechanisms that enable the unique sociality of humans, from the angle of cognitive science. In my talk, I will focus on recent empirical evidence in the study of three fundamental social cognitive functions (social categorization, theory of mind and social learning; mainly from the empirical lenses of developmental psychology) in order to outline a theory that emphasizes the need to consider their interconnectedness. The proposal is that the ability to represent the social world along categories and the capacity to read others’ minds are used in an integrated way to efficiently assess the epistemic states of fellow humans by creating a shared representational space. The emergence of this shared representational space is both the result of and a prerequisite to efficient learning about the physical and social environment.
Is Theory of Mind Analogical? Evidence from the Analogical Theory of Mind cognitive model
Theory of mind, which consists of reasoning about the knowledge, belief, desire, and similar mental states of others, is a key component of social reasoning and social interaction. While it has been studied by cognitive scientists for decades, none of the prevailing theories of the processes that underlie theory of mind reasoning and development explain the breadth of experimental findings. I propose that this is because theory of mind is, like much of human reasoning, inherently analogical. In this talk, I will discuss several theory of mind findings from the psychology literature, the challenges they pose for our understanding of theory of mind, and bring in evidence from the Analogical Theory of Mind (AToM) cognitive model that demonstrates how these findings fit into an analogical understanding of theory of mind reasoning.
A New Approach to the Hard Problem of Consciousness
David Chalmers’s (1995) hard problem famously states: “It is widely agreed that experience arises from a physical basis, but we have no good explanation of why and how it so arises.” Thomas Nagel (1974) wrote something similar: “If we acknowledge that a physical theory of mind must account for the subjective character of experience, we must admit that no presently available conception gives us a clue about how this could be done.” This presentation will point the way towards the long-sought “good explanation” -- or at least it will provide “a clue”. I will make three points: (1) It is unfortunate that cognitive science took vision as its model example when looking for a ‘neural correlate of consciousness’ because cortical vision (like most cognitive processes) is not intrinsically conscious. There is not necessarily ‘something it is like’ to see. (2) Affective feeling, by contrast, is conscious by definition. You cannot feel something without feeling it. Moreover, affective feeling, generated in the upper brainstem, is the foundational form of consciousness: prerequisite for all the higher cognitive forms. (3) The functional mechanism of feeling explains why and how it cannot go on ‘in the dark’, free of any inner feel. Affect enables the organism to monitor deviations from its expected self-states in uncertain situations and thereby frees homeostasis from the limitations of automatism. As Nagel says, “An organism has conscious mental states if and only if there is something that it is like to be that organism—something it is like for the organism.” Affect literally constitutes the sentient subject.
GPT-4 can recognize Theory of Mind in natural conversations: fMRI evidence
FENS Forum 2024