TopicNeuro

adrenergic receptors

2 Seminars2 ePosters

Latest

SeminarNeuroscience

Elucidating the mechanism underlying Stress and Caffeine-induced motor dysfunction using a mouse model of Episodic Ataxia Type 2

Heather Snell
Albert Einstein Medical College
Apr 27, 2022

Episodic Ataxia type 2 (EA2), caused by mutations in the CACNA1A gene, results in a loss-of-function of the P/Q type calcium channel, which leads to baseline ataxia, and attacks of dyskinesia, that can last a few hours to a few days. Attacks are brought on by consumption of caffeine, alcohol, and physical or emotional stress. Interestingly, caffeine and stress are common triggers among other episodic channelopathies, as well as causing tremor or shaking in otherwise healthy adults. The mechanism underlying stress and caffeine induced motor impairment remains poorly understood. Utilizing behavior, and in vivo and in vitro electrophysiology in the tottering mouse, a well characterized mouse model of EA2, or WT mice, we first sought to elucidate the mechanism underlying stress-induced motor impairment. We found stress induces attacks in EA2 though the activation of cerebellar alpha 1 adrenergic receptors by norepinephrine (NE) through casein kinase 2 (CK2) dependent phosphorylation. This decreases SK2 channel activity, causing increased Purkinje cell irregularity and motor impairment. Knocking down or blocking CK2 with an FDA approved drug CX-4945 prevented PC irregularity and stress-induced attacks. We next hypothesized caffeine, which has been shown to increase NE levels, could induce attacks through the same alpha 1 adrenergic mechanism in EA2. We found caffeine increases PC irregularity and induces attacks through the same CK2 pathway. Block of alpha 1 adrenergic receptors, however, failed to prevent caffeine-induced attacks. Caffeine instead induces attacks through the block of cerebellar A1 adenosine receptors. This increases the release of glutamate, which interacts with mGluR1 receptors on PC, resulting in erratic firing and motor attacks. Finally, we show a novel direct interaction between mGluR1 and CK2, and inhibition of mGluR1 prior to initiation of attack, prevents the caffeine-induced increase in phosphorylation. These data elucidate the mechanism underlying stress and caffeine-induced motor impairment. Furthermore, given the success of CX-4945 to prevent stress and caffeine induced attacks, it establishes ground-work for the development of therapeutics for the treatment of caffeine and stress induced attacks in EA2 patients and possibly other episodic channelopathies.

SeminarNeuroscience

Sympathetic nerve remodeling in adipose tissue

Ken Loh
The Rockefeller University
Oct 11, 2021

Sympathetic nerve activation of adrenergic receptors on fat is the major pathway the brain uses to drive non-shivering thermogenesis in brown adipose tissue and lipolysis in white fat. There is accumulating evidence that the peripheral nerve architecture inside of organs is plastic (can be remodeled) but the factors and conditions that regulate or result in remodeling are largely unknown. Particularly for fat, it remains unclear if nerves in fat can be remodeled in step with hyperplasia/trophy of adipose tissue as result of a prolonged energy surfeit. This talk will discuss our recent work identifying the sympathetic nerve architecture in adipose tissue as highly plastic in response to the adipose hormone leptin, the brain circuitry leptin acts on to regulate this and the physiological effects remodeling of innervation has on fat tissue function.

ePosterNeuroscience

Adrenergic receptors control of rebound depolarization in medial prefrontal cortex pyramidal neurons

Przemyslaw Kurowski, Piotr Lach

FENS Forum 2024

ePosterNeuroscience

Role of central amygdaloid alpha-2 adrenergic receptors in the modulation of anxiety in the rat

Miguel Perez de la Mora, Juan Carlos Mondragon-Hernandez, Luis Angel Cruz-Montesinos, Minerva Crespo-Ramirez, Daniel Alejandro Palacios-Lagunas, Dasiel Oscar Borroto-Escuela, Kjell Fuxe

FENS Forum 2024

adrenergic receptors coverage

4 items

Seminar2
ePoster2
Domain spotlight

Explore how adrenergic receptors research is advancing inside Neuro.

Visit domain