adult brain
Latest
Establishment and aging of the neuronal DNA methylation landscape in the hippocampus
The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.
Valentine’s Day for people with multiple sclerosis: promoting brain repair through remyelination
Current disease-modifying therapies in multiple sclerosis are all focused on suppressing the inflammatory phase of the disease. This has been extremely successful, and it is doubtful that significantly more efficacious anti-inflammatory treatments will be found. However, it remains the case that people with relapsing-remitting multiple sclerosis acquire disability on treatment, and enter the secondary progressive phase. I argue that we now need treatments that prevent neuronal degeneration. The most promising approach is to prevent axons degenerating by remyelination. Since the discovery that the adult brain contains stem cells which can remyelinate, the problem now is how to promote endogenous remyelination, and how to know when we have achieved this! We have successfully identified one drug which promotes remyelination but unfortunately it is too toxic for use in the clinic. So the hunt continues.
Visualising time in the human brain
We all have a sense of time. Yet it is a particularly intangible sensation. So how is our “sense” of time represented in the brain? Functional neuroimaging studies have consistently identified a network of regions, including Supplementary Motor Area and basal ganglia, that are activated when participants make judgements about the duration of currently unfolding events. In parallel, left parietal cortex and cerebellum are activated when participants predict when future events are likely to occur. These structures are activated by temporal processing even when task goals are purely perceptual. So why should the perception of time be represented in regions of the brain that have more traditionally been implicated in motor function? One possibility is that we learn about time through action. In other words, action could provide the functional scaffolding for learning about time in childhood, explaining why it has come to be represented in motor circuits of the adult brain.
From a by-stander to an influencer: How microglia adapt to altered environments and influence neuronal activity
Microglia, traditionally classified as immune-responsive, adjust synaptic connections during development and disease. However, their role in the adult nervous system has been mostly diminished to an observer. In my research group, we are interested in how microglia are involved in establishing and maintaining accurate neuronal circuit function in the retina and in the visual cortex. In my talk, I will introduce our strategies how to decipher the microglia’s functional identity and how this information guided us to microglia enabled extracellular matrix remodeling and reinstatment of juvenile-like plasticity in the adult brain.
New Mechanisms of Extracellular Matrix Remodeling
In the adult brain, synapses are tightly enwrapped by lattices of extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the ECM at synapses. I review in the talk our recent work showcasing such a process, based on the constitutive recycling of synaptic ECM molecules. I discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Wiring & Rewiring: Experience-Dependent Circuit Development and Plasticity in Sensory Cortices
To build an appropriate representation of the sensory stimuli around the world, neural circuits are wired according to both intrinsic factors and external sensory stimuli. Moreover, the brain circuits have the capacity to rewire in response to altered environment, both during early development and throughout life. In this talk, I will give an overview about my past research in studying the dynamic processes underlying functional maturation and plasticity in rodent sensory cortices. I will also present data about the current and future research in my lab – that is, the synaptic and circuit mechanisms by which the mature brain circuits employ to regulate the balance between stability and plasticity. By applying chronic 2-photon calcium and close-loop visual exposure, we studied the circuit changes at single-neuron resolution to show that concurrent running with visual stimulus is required to drive neuroplasticity in the adult brain.
Stem cell approaches to understand acquired and genetic epilepsies
The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.
Molecular and cellular mechanisms controlling neural stem cell activity
Neural stem cells (NSCs) generate new neurons throughout life. We use imaging-, genome editing-, and transgenesis-based approaches as well as cellular models of human diseases using pluripotent embryonic cells to study the molecular and cellular framework of NSC biology in the developing and adult brain. Aim of our research is to understand how physiologic and disease-associated alterations of neurogenesis are translated into stem cell-associated plastic changes in the developing and adult brain on a molecular, cellular, and behavioral level.
Activity dependent myelination: a mechanism for learning and regeneration?
The CNS is responsive to an ever-changing environment. Until recently, studies of neural plasticity focused almost exclusively on functional and structural changes of neuronal synapses. In recent years, myelin plasticity has emerged as a potential modulator of neural networks. Myelination of previously unmyelinated axons, and changes in the structure on already-myelinated axons, can have large effects on network function. The heterogeneity of the extent of how axons in the CNS are myelinated offers diverse scope for dynamic myelin changes to fine-tune neural circuits. The traditionally held view of myelin as a passive insulator of axons is now changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. Myelin, produced by oligodendrocytes (OLs), is essential for normal brain function, as it provides fast signal transmission, promotes synchronization of neuronal signals and helps to maintain neuronal function. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. OPCs can sense neuronal activity as they receive synaptic inputs from neurons and express voltage-gated ion channels and neurotransmitter receptors, and differentiate into myelinating OLs in response to changes in neuronal activity. This lecture will explore to what extent myelin plasticity occurs in adult animals, whether myelin changes occur in non-motor learning tasks, especially in learning and memory, and questions whether myelin plasticity and myelin regeneration are two sides of the same coin.
The emergence of a ‘V1 like’ structure for soundscapes representing vision in the adult brain in the absence of visual experience
Role of Oxytocin in regulating microglia functions to prevent brain damage of the developing brain
Every year, 30 million infants worldwide are delivered after intra-uterine growth restriction (IUGR) and 15 million are born preterm. These two conditions are the leading causes of ante/perinatal stress and brain injury responsible for neurocognitive and behavioral disorders in more than 9 million children each year. Both prematurity and IUGR are associated with perinatal systemic inflammation, a key factor associated with neuroinflammation and identified to be the best predictor of subsequent neurological impairments. Most of pharmacological candidates have failed to demonstrate any beneficial effect to prevent perinatal brain damage. In contrast, environmental enrichment based on developmental care, skin-to-skin contact and vocal/music intervention appears to confer positive effects on brain structure and function. However, mechanisms underlying these effects remain unknown. There is strong evidence that an adverse environment during pregnancy and the perinatal period can influence hormonal responses of the newborn with long-lasting neurobehavioral consequences in infancy and adulthood. Excessive cortisol release in response to perinatal stress induces pro-inflammatory and brain-programming effects. These deleterious effects are known to be balanced by Oxytocin (OT), a neuropeptide playing a key role during the perinatal period and parturition, in social behavior and regulating the central inflammatory response to injury in the adult brain. Using a rodent model of IUGR associated with perinatal brain damage, we recently reported that Carbetocin, a brain permeable long-lasting OT receptor (OTR) agonist, was associated with a significant reduction of activated microglia, the primary immune cells of the brain. Moreover this reduced microglia reactivity was associated to a long-term neuroprotection. These findings make OT a promising candidate for neonatal neuroprotection through neuroinflammation regulation. However, the causality between the endogenous OT and central inflammation response to injury has not been established and will be further studied by the lab.
Stem Cells in the Adult Brain: Regulation and Diversity
Neural stem cells reside in the adult mammalian brain. The ventricular-subventricular zone (V-SVZ) gives rise to olfactory bulb neurons, as well as small numbers of glia throughout life. Adult V-SVZ neural stem cells dynamically integrate intrinsic and extrinsic signals to either maintain the quiescent state or to become activated to divide and generate progeny. I will present our recent findings highlighting adult neural stem cell heterogeneity, including the identification of novel gliogenic domains and cell types, and the key roles of physiological state and long-range signals in the regulation of regionally distinct pools of adult neural stem cells.
Fate and freedom in the developing mammalian brain
While the diversity of neurons in the adult mammalian brain is staggering, these cells emerge from a seemingly limited set of progenitors during development. This begs the question of how complexity emerges from a finite number of elements during dynamic biological processes. Here, I will discuss recent work from my laboratory addressing relationships between genetic diversity and connectivity in single-cell types, and how progenitor diversity may constrain adult brain cellular states during normal and abnormal brain development.
More than Bystanders in Dementia, Learning What Microglia Do
Genome-wide association studies implicate microglia in Alzheimer’s disease (AD) pathogenesis, but how microglia contribute to cognitive decline in AD is unclear. Emerging research suggests microglia, the resident macrophages of the central nervous system, to be active participants in brain wiring. One mechanism by which microglia help eliminate synapses is through the classical complement pathway (C1q, CR3/C3). Data from multiple laboratories collectively suggest that there may be an aberrant reactivation of the complement-dependent pruning pathway in multiple models of neurologic diseases including AD. These data altogether suggest that microglia participate in synaptic pathology. However, how and which synapses are targeted are unknown. Furthermore, whether microglia directly impair synaptic function is unknown. Primary goals of my laboratory are to understand how higher cognitive functions such as learning and memory involve microglial biology in the healthy adult brain and dissect immune mechanisms behind the region-specific vulnerability of synapse loss and neuronal dysfunction during disease. Mechanistic insight into local signals that regulate neuroglia interactions will be key to developing potential therapeutic avenues to target in disease.
Adaptive plasticity in adult brain circuitry during naturally occurring regeneration of sensory inputs
FENS Forum 2024
Childhood trauma in the adult brain: The relationship between adverse childhood experiences, brain structure, and mental health in late adulthood
FENS Forum 2024
Distinct impact modes of polygenic disposition to dyslexia in the adult brain
FENS Forum 2024
adult brain coverage
17 items