Latest

SeminarNeuroscience

Cortical circuits for olfactory navigation

Cindy Poo
Champalimaud
May 14, 2020

Olfactory navigation is essential for the survival of living beings from unicellular organisms to mammals. In the wild, rodents combine odor information with an internal spatial representation of the environment for foraging and navigation. What are the neural circuits in the brain that implement these behaviours? My research addresses this question by examining the synaptic circuits and neural population activity in the olfactory cortex to understand the integration of olfactory and spatial information. Primary olfactory (piriform) cortex (PCx) has long been recognized as a highly associative brain structure. What is the behavioural and functional role of these associative synapses in PCx? We designed an odor-cued navigation task, where rats must use both olfactory and spatial information to obtain water rewards. We recorded from populations of posterior piriform cortex (pPCx) neurons during behaviour and found that individual neurons were not only odor-selective, but also fired differentially to the same odor sampled at different locations, forming an “olfactory place map”. Spatial locations can be decoded from simultaneously recorded pPCx population, and spatial selectivity is maintained in the absence of odors, across behavioural contexts. This novel olfactory place map is consistent with our finding for a dominant role of associative excitatory synapses in shaping PCx representations, and suggest a role for PCx spatial representations in supporting olfactory navigation. This work not only provides insight into the neural basis for how odors can be used for navigation, but also reveals PCx as a prime site for addressing the general question of how sensory information is anchored within memory systems and combined with cognitive maps to guide flexible behaviour.

associative synapses coverage

1 items

Seminar1
Domain spotlight

Explore how associative synapses research is advancing inside Neuro.

Visit domain