attention allocation
Latest
Rethinking Attention: Dynamic Prioritization
Decades of research on understanding the mechanisms of attentional selection have focused on identifying the units (representations) on which attention operates in order to guide prioritized sensory processing. These attentional units fit neatly to accommodate our understanding of how attention is allocated in a top-down, bottom-up, or historical fashion. In this talk, I will focus on attentional phenomena that are not easily accommodated within current theories of attentional selection – the “attentional platypuses,” as they allude to an observation that within biological taxonomies the platypus does not fit into either mammal or bird categories. Similarly, attentional phenomena that do not fit neatly within current attentional models suggest that current models need to be revised. I list a few instances of the ‘attentional platypuses” and then offer a new approach, the Dynamically Weighted Prioritization, stipulating that multiple factors impinge onto the attentional priority map, each with a corresponding weight. The interaction between factors and their corresponding weights determines the current state of the priority map which subsequently constrains/guides attention allocation. I propose that this new approach should be considered as a supplement to existing models of attention, especially those that emphasize categorical organizations.
Attentional Foundations of Framing Effects
Framing effects in individual decision-making have puzzled economists for decades because they are hard, if at all, to explain with rational choice theories. Why should mere changes in the description of a choice problem affect decision-making? Here, we examine the hypothesis that changes in framing cause changes in the allocation of attention to the different options – measured via eye-tracking – and give rise to changes in decision-making. We document that the framing of a sure alternative as a gain – as opposed to a loss – in a risk-taking task increases the attentional advantage of the sure option and induces a higher choice frequency of that option – a finding that is predicted by the attentional drift-diffusion model (aDDM). The model also correctly predicts other key findings such as that the increased attentional advantage of the sure option in the gain frame should also lead quicker decisions in this frame. In addition, the data reveal that increasing risk aversion at higher stake sizes may also be driven by attentional processes because the sure option receives significantly more attention – regardless of frame – at higher stakes. We also corroborate the causal impact of framing-induced changes of attention on choice with an additional experiment that manipulates attention exogenously. Finally, to study the precise mechanisms underlying the framing effect we structurally estimate an aDDM that allows for frame and option-dependent parameters. The estimation results indicate that – in addition to the direct effects of framing-induced changes in attention on choice – the gain frame also causes (i) an increase in the attentional discount of the gamble and (ii) an increased concavity of utility. Our findings suggest that the traditional explanation of framing effects in risky choice in terms of a more concave value function in the gain domain is seriously incomplete and that attentional mechanisms as hypothesized in the aDDM play a key role.
attention allocation coverage
2 items