autonomy
Latest
Autopoiesis and Enaction in the Game of Life
Enaction plays a central role in the broader fabric of so-called 4E (embodied, embedded, extended, enactive) cognition. Although the origin of the enactive approach is widely dated to the 1991 publication of the book "The Embodied Mind" by Varela, Thompson and Rosch, many of the central ideas trace to much earlier work. Over 40 years ago, the Chilean biologists Humberto Maturana and Francisco Varela put forward the notion of autopoiesis as a way to understand living systems and the phenomena that they generate, including cognition. Varela and others subsequently extended this framework to an enactive approach that places biological autonomy at the foundation of situated and embodied behavior and cognition. I will describe an attempt to place Maturana and Varela's original ideas on a firmer foundation by studying them within the context of a toy model universe, John Conway's Game of Life (GoL) cellular automata. This work has both pedagogical and theoretical goals. Simple concrete models provide an excellent vehicle for introducing some of the core concepts of autopoiesis and enaction and explaining how these concepts fit together into a broader whole. In addition, a careful analysis of such toy models can hone our intuitions about these concepts, probe their strengths and weaknesses, and move the entire enterprise in the direction of a more mathematically rigorous theory. In particular, I will identify the primitive processes that can occur in GoL, show how these can be linked together into mutually-supporting networks that underlie persistent bounded entities, map the responses of such entities to environmental perturbations, and investigate the paths of mutual perturbation that these entities and their environments can undergo.
Glial and Neuronal Biology of the Aging Brain Symposium, Alana Down Syndrome Center and Aging Brain Initiative at Picower, MIT
The Aging Brain Initiative (ABI) is an interdisciplinary effort by MIT focusing on understanding neurodegeneration and discovery efforts to find hallmarks of aging, both in health and disease." "The Alana Down Syndrome Center (ADSC) aims to deepen knowledge about Down syndrome and to improve health, autonomy and inclusion of people with this genetic condition." "The ABI and the ADSC have joined forces for this year's symposium to highlight how aging-related changes to the brain overlap with neurological aspects of Down syndrome. Our hope is to encourage greater collaboration between the brain aging and Down syndrome research communities.
Glial and Neuronal Biology of the Aging Brain Symposium, Alana Down Syndrome Center and Aging Brain Initiative at Picower, MIT
The Aging Brain Initiative (ABI) is an interdisciplinary effort by MIT focusing on understanding neurodegeneration and discovery efforts to find hallmarks of aging, both in health and disease." "The Alana Down Syndrome Center (ADSC) aims to deepen knowledge about Down syndrome and to improve health, autonomy and inclusion of people with this genetic condition." "The ABI and the ADSC have joined forces for this year's symposium to highlight how aging-related changes to the brain overlap with neurological aspects of Down syndrome. Our hope is to encourage greater collaboration between the brain aging and Down syndrome research communities.
On biological and cognitive autonomy
In this talk I will introduce the central notions of the theory of autonomy, as it is being currently developed in biology and cognitive science. The theory of autonomy puts forward the capacity of self-determination of organisms as whole systems, and constitutes thereby an alternative to more reductionist and mechanistic approaches. I will discuss how the theory of autonomy provides a justification for the scientific use of notions as function, norm, agency and teleology, whose epistemological legitimacy is highly debated. I will conclude by describing the difficult challenges that poses the transition from biological to cognitive autonomy.
From oscillations to laminar responses - characterising the neural circuitry of autobiographical memories
Autobiographical memories are the ghosts of our past. Through them we visit places long departed, see faces once familiar, and hear voices now silent. These, often decades-old, personal experiences can be recalled on a whim or come unbidden into our everyday consciousness. Autobiographical memories are crucial to cognition because they facilitate almost everything we do, endow us with a sense of self and underwrite our capacity for autonomy. They are often compromised by common neurological and psychiatric pathologies with devastating effects. Despite autobiographical memories being central to everyday mental life, there is no agreed model of autobiographical memory retrieval, and we lack an understanding of the neural mechanisms involved. This precludes principled interventions to manage or alleviate memory deficits, and to test the efficacy of treatment regimens. This knowledge gap exists because autobiographical memories are challenging to study – they are immersive, multi-faceted, multi-modal, can stretch over long timescales and are grounded in the real world. One missing piece of the puzzle concerns the millisecond neural dynamics of autobiographical memory retrieval. Surprisingly, there are very few magnetoencephalography (MEG) studies examining such recall, despite the important insights this could offer into the activity and interactions of key brain regions such as the hippocampus and ventromedial prefrontal cortex. In this talk I will describe a series of MEG studies aimed at uncovering the neural circuitry underpinning the recollection of autobiographical memories, and how this changes as memories age. I will end by describing our progress on leveraging an exciting new technology – optically pumped MEG (OP-MEG) which, when combined with virtual reality, offers the opportunity to examine millisecond neural responses from the whole brain, including deep structures, while participants move within a virtual environment, with the attendant head motion and vestibular inputs.
Human voluntary action: from thought to movement
The ability to decide and act autonomously is a distinctive feature of human cognition. From a motor neurophysiology viewpoint, these 'voluntary' actions can be distinguished by the lack of an obvious triggering sensory stimulus: the action is considered to be a product of thought, rather than a reflex result of a specific input. A reverse engineering approach shows that such actions are caused by neurons of the primary cortex, which in turn depend on medial frontal areas, and finally a combination of prefrontal cortical connections and subcortical drive from basal ganglia loops. One traditional marker of voluntary action is the EEG readiness potential (RP), recorded over the frontal cortex prior to voluntary actions. However, the interpretation of this signal remains controversial, and very few experimental studies have attempted to link the RP to the thought process that lead to voluntary action. In this talk, I will report new studies that show learning an internal model about the optimum delay at which to act influences the amplitude of the RP. More generally, a scientific understanding of voluntariness and autonomy will require new neurocognitive paradigms connecting thought and action.
autonomy coverage
6 items