Latest

SeminarNeuroscience

Neural mechanisms of rhythmic motor control in Drosophila

John Tuthill
University of Washington, Seattle, USA
May 16, 2025

All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.

SeminarNeuroscience

Learning and Memory

Nicolas Brunel, Ashok Litwin-Kumar, Julijana Gjeorgieva
Duke University; Columbia University; Technical University Munich
Nov 29, 2024

This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.

SeminarNeuroscience

How do we sleep?

William Wisden
Dept Life Sciences & UK Dementia Research Institute, Imperial College London, UK
Nov 28, 2024

There is no consensus on if sleep is for the brain, body or both. But the difference in how we feel following disrupted sleep or having a good night of continuous sleep is striking. Understanding how and why we sleep will likely give insights into many aspects of health. In this talk I will outline our recent work on how the prefrontal cortex can signal to the hypothalamus to regulate sleep preparatory behaviours and sleep itself, and how other brain regions, including the ventral tegmental area, respond to psychosocial stress to induce beneficial sleep. I will also outline our work on examining the function of the glymphatic system, and whether clearance of molecules from the brain is enhanced during sleep or wakefulness.

SeminarNeuroscience

Understanding the complex behaviors of the ‘simple’ cerebellar circuit

Megan Carey
The Champalimaud Center for the Unknown, Lisbon, Portugal
Nov 14, 2024

Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.

SeminarNeuroscience

Personalized medicine and predictive health and wellness: Adding the chemical component

Anne Andrews
University of California
Jul 9, 2024

Wearable sensors that detect and quantify biomarkers in retrievable biofluids (e.g., interstitial fluid, sweat, tears) provide information on human dynamic physiological and psychological states. This information can transform health and wellness by providing actionable feedback. Due to outdated and insufficiently sensitive technologies, current on-body sensing systems have capabilities limited to pH, and a few high-concentration electrolytes, metabolites, and nutrients. As such, wearable sensing systems cannot detect key low-concentration biomarkers indicative of stress, inflammation, metabolic, and reproductive status.  We are revolutionizing sensing. Our electronic biosensors detect virtually any signaling molecule or metabolite at ultra-low levels. We have monitored serotonin, dopamine, cortisol, phenylalanine, estradiol, progesterone, and glucose in blood, sweat, interstitial fluid, and tears. The sensors are based on modern nanoscale semiconductor transistors that are straightforwardly scalable for manufacturing. We are developing sensors for >40 biomarkers for personalized continuous monitoring (e.g., smartwatch, wearable patch) that will provide feedback for treating chronic health conditions (e.g., perimenopause, stress disorders, phenylketonuria). Moreover, our sensors will enable female fertility monitoring and the adoption of more healthy lifestyles to prevent disease and improve physical and cognitive performance.

SeminarNeuroscience

Modelling the fruit fly brain and body

Srinivas Turaga
HHMI | Janelia
May 15, 2024

Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.

SeminarNeuroscience

Modeling the fruit fly brain and body

Srinivas Turaga
HHMI Janelia Research Campus
Apr 18, 2024
SeminarNeuroscience

Mitochondrial diversity in the mouse and human brain

Martin Picard
Columbia University, New York, USA
Apr 17, 2024

The basis of the mind, of mental states, and complex behaviors is the flow of energy through microscopic and macroscopic brain structures. Energy flow through brain circuits is powered by thousands of mitochondria populating the inside of every neuron, glial, and other nucleated cell across the brain-body unit. This seminar will cover emerging approaches to study the mind-mitochondria connection and present early attempts to map the distribution and diversity of mitochondria across brain tissue. In rodents, I will present convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct behaviorally-relevant mitochondrial phenotypes exist across large-scale mouse brain networks. Extending these findings to the human brain, I will present a developing systematic biochemical and molecular map of mitochondrial variation across cortical and subcortical brain structures, representing a foundation to understand the origin of complex energy patterns that give rise to the human mind.

SeminarNeuroscience

Stability of visual processing in passive and active vision

Tobias Rose
Institute of Experimental Epileptology and Cognition Research University of Bonn Medical Center
Mar 28, 2024

The visual system faces a dual challenge. On the one hand, features of the natural visual environment should be stably processed - irrespective of ongoing wiring changes, representational drift, and behavior. On the other hand, eye, head, and body motion require a robust integration of pose and gaze shifts in visual computations for a stable perception of the world. We address these dimensions of stable visual processing by studying the circuit mechanism of long-term representational stability, focusing on the role of plasticity, network structure, experience, and behavioral state while recording large-scale neuronal activity with miniature two-photon microscopy.

SeminarNeuroscience

The quest for brain identification

Enrico Amico
Aston University
Mar 21, 2024

In the 17th century, physician Marcello Malpighi observed the existence of distinctive patterns of ridges and sweat glands on fingertips. This was a major breakthrough, and originated a long and continuing quest for ways to uniquely identify individuals based on fingerprints, a technique massively used until today. It is only in the past few years that technologies and methodologies have achieved high-quality measures of an individual’s brain to the extent that personality traits and behavior can be characterized. The concept of “fingerprints of the brain” is very novel and has been boosted thanks to a seminal publication by Finn et al. in 2015. They were among the firsts to show that an individual’s functional brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it is possible to identify an individual among a large group of subjects solely on the basis of her or his connectivity profile. Yet, the discovery of brain fingerprints opened up a plethora of new questions. In particular, what exactly is the information encoded in brain connectivity patterns that ultimately leads to correctly differentiating someone’s connectome from anybody else’s? In other words, what makes our brains unique? In this talk I am going to partially address these open questions while keeping a personal viewpoint on the subject. I will outline the main findings, discuss potential issues, and propose future directions in the quest for identifiability of human brain networks.

SeminarNeuroscience

Neural Circuits that connect Body and Mind

Ivan de Araujo
Max Planck Institute for Biological Cybernetics, Tübingen
Feb 8, 2024
SeminarNeuroscience

Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep

Hiroki R. Ueda
Graduate School of Medicine, University of Tokyo
Jan 15, 2024

The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.

SeminarNeuroscience

Sensory Consequences of Visual Actions

Martin Rolfs
Humboldt-Universität zu Berlin
Dec 8, 2023

We use rapid eye, head, and body movements to extract information from a new part of the visual scene upon each new gaze fixation. But the consequences of such visual actions go beyond their intended sensory outcomes. On the one hand, intrinsic consequences accompany movement preparation as covert internal processes (e.g., predictive changes in the deployment of visual attention). On the other hand, visual actions have incidental consequences, side effects of moving the sensory surface to its intended goal (e.g., global motion of the retinal image during saccades). In this talk, I will present studies in which we investigated intrinsic and incidental sensory consequences of visual actions and their sensorimotor functions. Our results provide insights into continuously interacting top-down and bottom-up sensory processes, and they reify the necessity to study perception in connection to motor behavior that shapes its fundamental processes.

SeminarNeuroscience

Gut/Body interactions in health and disease

Julia Cordero
University of Glasgow
Nov 21, 2023

The adult intestine is a major barrier epithelium and coordinator of multi-organ functions. Stem cells constantly repair the intestinal epithelium by adjusting their proliferation and differentiation to tissue intrinsic as well as micro- and macro-environmental signals. How these signals integrate to control intestinal and whole-body homeostasis is largely unknown. Addressing this gap in knowledge is central to an improved understanding of intestinal pathophysiology and its systemic consequences. Combining Drosophila and mammalian model systems my laboratory has discovered fundamental mechanisms driving intestinal regeneration and tumourigenesis and outlined complex inter-organ signaling regulating health and disease. During my talk, I will discuss inter-related areas of research from my lab, including:1- Interactions between the intestine and its microenvironment influencing intestinal regeneration and tumourigenesis. 2- Long-range signals from the intestine impacting whole-body in health and disease.

SeminarNeuroscienceRecording

Multisensory integration in peripersonal space (PPS) for action, perception and consciousness

Andrea Serino
University Hospital of Lausanne
Nov 2, 2023

Note the later time in the USA!

SeminarNeuroscience

Attending to the ups and downs of Lewy body dementia: An exploration of cognitive fluctuations

CANCELLED: John-Paul Taylor
Newcastle University, UK
Jun 27, 2023

Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) share similarities in pathology and clinical presentation and come under the umbrella term of Lewy body dementias (LBD). Fluctuating cognition is a key symptom in LBD and manifests as altered levels of alertness and attention, with a marked difference between best and worst performance. Cognition and alertness can change over seconds or minutes to hours and days of obtundation. Cognitive fluctuations can have significant impacts on the quality of life of people with LBD as well as potentially contribute to the exacerbation of other transient symptoms including, for example, hallucinations and psychosis as well as making it difficult to measure cognitive effect size benefits in clinical trials of LBD. However, this significant symptom in LBD is poorly understood. In my presentation I will discuss the phenomenology of cognitive fluctuations, how we can measure it clinically and limitations of these approaches. I will then outline the work of our group and others which has been focussed on unpicking the aetiological basis of cognitive fluctuations in LBD using a variety of imaging approaches (e.g. SPECT, sMRI, fMRI and EEG). I will then briefly explore future research directions.

SeminarNeuroscience

Movement planning as a window into hierarchical motor control

Katja Kornysheva
Centre for Human Brain (CHBH) at the University of Birmingham, UK
Jun 15, 2023

The ability to organise one's body for action without having to think about it is taken for granted, whether it is handwriting, typing on a smartphone or computer keyboard, tying a shoelace or playing the piano. When compromised, e.g. in stroke, neurodegenerative and developmental disorders, the individuals’ study, work and day-to-day living are impacted with high societal costs. Until recently, indirect methods such as invasive recordings in animal models, computer simulations, and behavioural markers during sequence execution have been used to study covert motor sequence planning in humans. In this talk, I will demonstrate how multivariate pattern analyses of non-invasive neurophysiological recordings (MEG/EEG), fMRI, and muscular recordings, combined with a new behavioural paradigm, can help us investigate the structure and dynamics of motor sequence control before and after movement execution. Across paradigms, participants learned to retrieve and produce sequences of finger presses from long-term memory. Our findings suggest that sequence planning involves parallel pre-ordering of serial elements of the upcoming sequence, rather than a preparation of a serial trajectory of activation states. Additionally, we observed that the human neocortex automatically reorganizes the order and timing of well-trained movement sequences retrieved from memory into lower and higher-level representations on a trial-by-trial basis. This echoes behavioural transfer across task contexts and flexibility in the final hundreds of milliseconds before movement execution. These findings strongly support a hierarchical and dynamic model of skilled sequence control across the peri-movement phase, which may have implications for clinical interventions.

SeminarNeuroscience

The embodied brain

Pierre-Marie Lledo
Institut Pasteur
May 9, 2023

Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.

SeminarNeuroscience

Quasicriticality and the quest for a framework of neuronal dynamics

Leandro Jonathan Fosque
Beggs lab, IU Bloomington
May 3, 2023

Critical phenomena abound in nature, from forest fires and earthquakes to avalanches in sand and neuronal activity. Since the 2003 publication by Beggs & Plenz on neuronal avalanches, a growing body of work suggests that the brain homeostatically regulates itself to operate near a critical point where information processing is optimal. At this critical point, incoming activity is neither amplified (supercritical) nor damped (subcritical), but approximately preserved as it passes through neural networks. Departures from the critical point have been associated with conditions of poor neurological health like epilepsy, Alzheimer's disease, and depression. One complication that arises from this picture is that the critical point assumes no external input. But, biological neural networks are constantly bombarded by external input. How is then the brain able to homeostatically adapt near the critical point? We’ll see that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality while maintaining optimal properties for information transmission. We’ll see that simulations and experimental data confirm these predictions and describe new ones that could be tested soon. More importantly, we will see how this organizing principle could help in the search for biomarkers that could soon be tested in clinical studies.

SeminarNeuroscience

Obesity and Brain – Bidirectional Influences

Alain Dagher
McGill University
Apr 11, 2023

The regulation of body weight relies on homeostatic mechanisms that use a combination of internal signals and external cues to initiate and terminate food intake. Homeostasis depends on intricate communication between the body and the hypothalamus involving numerous neural and hormonal signals. However, there is growing evidence that higher-level cognitive function may also influence energy balance. For instance, research has shown that BMI is consistently linked to various brain, cognitive, and personality measures, implicating executive, reward, and attentional systems. Moreover, the rise in obesity rates over the past half-century is attributed to the affordability and widespread availability of highly processed foods, a phenomenon that contradicts the idea that food intake is solely regulated by homeostasis. I will suggest that prefrontal systems involved in value computation and motivation act to limit food overconsumption when food is scarce or expensive, but promote over-eating when food is abundant, an optimum strategy from an economic standpoint. I will review the genetic and neuroscience literature on the CNS control of body weight. I will present recent studies supporting a role of prefrontal systems in weight control. I will also present contradictory evidence showing that frontal executive and cognitive findings in obesity may be a consequence not a cause of increased hunger. Finally I will review the effects of obesity on brain anatomy and function. Chronic adiposity leads to cerebrovascular dysfunction, cortical thinning, and cognitive impairment. As the most common preventable risk factor for dementia, obesity poses a significant threat to brain health. I will conclude by reviewing evidence for treatment of obesity in adults to prevent brain disease.

SeminarNeuroscience

Self-perception: mechanosensation and beyond

Wei Zhang
National Natural Science Foundation of China
Apr 4, 2023

Brain-organ communications play a crucial role in maintaining the body's physiological and psychological homeostasis, and are controlled by complex neural and hormonal systems, including the internal mechanosensory organs. However, the progress has been slow due to technical hurdles: the sensory neurons are deeply buried inside the body and are not readily accessible for direct observation, the projection patterns from different organs or body parts are complex rather than converging into dedicate brain regions, the coding principle cannot be directly adapted from that learned from conventional sensory pathways. Our lab apply the pipeline of "biophysics of receptors-cell biology of neurons-functionality of neural circuits-animal behaviors" to explore the molecular and neural mechanisms of self-perception. In the lab, we mainly focus on the following three questions: 1, The molecular and cellular basis for proprioception and interoception. 2, The circuit mechanisms of sensory coding and integration of internal and external information. 3, The function of interoception in regulating behavior homeostasis.

SeminarNeuroscienceRecording

Sampling the environment with body-brain rhythms

Antonio Criscuolo
Maastricht University
Jan 25, 2023

Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?

SeminarNeuroscience

Neural circuits for body movements

Silvia Arber
University of Basel, Switzerland
Jan 16, 2023
SeminarNeuroscience

The embodied brain

Pierre-Marie Lledo
Institut Pasteur
Nov 29, 2022

Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, body-wide system of nerves, hormones and other signals that will be discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.

SeminarNeuroscience

Gut food cravings? How gut signals control appetite and metabolism

Kim Rewitz
University of Copenhagen
Nov 22, 2022

Gut-derived signals regulate metabolism, appetite, and behaviors important for mental health. We have performed a large-scale multidimensional screen to identify gut hormones and nutrient-sensing mechanisms in the intestine that regulate metabolism and behavior in the fruit fly Drosophila. We identified several gut hormones that affect fecundity, stress responses, metabolism, feeding, and sleep behaviors, many of which seem to act sex-specifically. We show that in response to nutrient intake, the enteroendocrine cells (EECs) of the adult Drosophila midgut release hormones that act via inter-organ relays to coordinate metabolism and feeding decisions. These findings suggest that crosstalk between the gut and other tissues regulates food choice according to metabolic needs, providing insight into how that intestine processes nutritional inputs and into the gut-derived signals that relay information regulating nutrient-specific hungers to maintain metabolic homeostasis.

SeminarNeuroscienceRecording

Do large language models solve verbal analogies like children do?

Claire Stevenson
University of Amsterdam
Nov 17, 2022

Analogical reasoning –learning about new things by relating it to previous knowledge– lies at the heart of human intelligence and creativity and forms the core of educational practice. Children start creating and using analogies early on, making incredible progress moving from associative processes to successful analogical reasoning. For example, if we ask a four-year-old “Horse belongs to stable like chicken belongs to …?” they may use association and reply “egg”, whereas older children will likely give the intended relational response “chicken coop” (or other term to refer to a chicken’s home). Interestingly, despite state-of-the-art AI-language models having superhuman encyclopedic knowledge and superior memory and computational power, our pilot studies show that these large language models often make mistakes providing associative rather than relational responses to verbal analogies. For example, when we asked four- to eight-year-olds to solve the analogy “body is to feet as tree is to …?” they responded “roots” without hesitation, but large language models tend to provide more associative responses such as “leaves”. In this study we examine the similarities and differences between children's and six large language models' (Dutch/multilingual models: RobBERT, BERT-je, M-BERT, GPT-2, M-GPT, Word2Vec and Fasttext) responses to verbal analogies extracted from an online adaptive learning environment, where >14,000 7-12 year-olds from the Netherlands solved 20 or more items from a database of 900 Dutch language verbal analogies.

SeminarNeuroscienceRecording

Shallow networks run deep: How peripheral preprocessing facilitates odor classification

Yonatan Aljadeff
University of California, San Diego (UCSD)
Nov 9, 2022

Drosophila olfactory sensory hairs ("sensilla") typically house two olfactory receptor neurons (ORNs) which can laterally inhibit each other via electrical ("ephaptic") coupling. ORN pairing is highly stereotyped and genetically determined. Thus, olfactory signals arriving in the Antennal Lobe (AL) have been pre-processed by a fixed and shallow network at the periphery. To uncover the functional significance of this organization, we developed a nonlinear phenomenological model of asymmetrically coupled ORNs responding to odor mixture stimuli. We derived an analytical solution to the ORNs’ dynamics, which shows that the peripheral network can extract the valence of specific odor mixtures via transient amplification. Our model predicts that for efficient read-out of the amplified valence signal there must exist specific patterns of downstream connectivity that reflect the organization at the periphery. Analysis of AL→Lateral Horn (LH) fly connectomic data reveals evidence directly supporting this prediction. We further studied the effect of ephaptic coupling on olfactory processing in the AL→Mushroom Body (MB) pathway. We show that stereotyped ephaptic interactions between ORNs lead to a clustered odor representation of glomerular responses. Such clustering in the AL is an essential assumption of theoretical studies on odor recognition in the MB. Together our work shows that preprocessing of olfactory stimuli by a fixed and shallow network increases sensitivity to specific odor mixtures, and aids in the learning of novel olfactory stimuli. Work led by Palka Puri, in collaboration with Chih-Ying Su and Shiuan-Tze Wu.

SeminarNeuroscience

Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer

Jeremy C. Borniger
Cold Spring Harbor Laboratory
Oct 18, 2022

The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.

SeminarNeuroscience

Radiopharmaceutical evaluation of novel bifunctional chelators and bioconjugates for tumour imaging and therapy

Manja Kubeil
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden- Rossendorf (HDZR), Germany
Oct 12, 2022

Bispidines (3,7-diazabicyclo[3.3.1]nonane) and their derivatives act as bifunctional chelators (BFC), combining the advantages of multidentate macrocyclic and acyclic ligands e.g. high kinetic inertness, rapid radiolabelling under mild conditions. This bicyclic chelator system shows a great diversity in terms of its denticity and type of functional groups, yielding a wide range of multidentate ligands that can bind a variety of different metal ions. In addition, they allow a facile functionalisation of targeting molecules such as peptides, peptidomimetics, and bispeci􀄀c antibodies. Herein, examples of various bispidine complexes labelled with [64Cu]Cu2+, [111In]In3+, [ 177Lu]Lu3+ or [ 225Ac]Ac3+ will be presented which provide a picture of how different substituents in􀄁uence the coordination mode. Target-speci􀄀c radiolabelled bispidine-based conjugates (e.g. peptides, antibody fragments, antibodies) investigated in vivo by positron emission or single-photon emission computed tomography will be presented and discussed in terms of their suitability for nuclear medicine applications.

SeminarNeuroscience

The brain: A coincidence detector between sensory experiences and internal milieu

Pierre-Marie Lledo
Pasteur Institute, Paris, France
Aug 26, 2022

Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, bodywide system of nerves, hormones and other signals that we will discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.

SeminarNeuroscience

The glymphatic system in motor neurone disease

David Wright
Monash University
Jul 6, 2022

Neurodegenerative diseases are chronic and inexorable conditions characterised by the presence of insoluble aggregates of abnormally ubiquinated and phosphorylated proteins. Recent evidence also suggests that protein misfolding can propagate throughout the body in a prion-like fashion via the interstitial or cerebrospinal fluids (CSF). As protein aggregation occurs well before the onset of brain damage and symptoms, new biomarkers sensitive to early pathology, together with therapeutic strategies that include eliminating seed proteins and blocking cell-to-cell spread, are of vital importance. The glymphatic system, which facilitates the continuous exchange of CSF and interstitial fluid to clear the brain of waste, presents as a potential biomarker of disease severity, therapeutic target, and drug delivery system. In this webinar, Associate Professor David Wright from the Department of Neuroscience, Monash University, will outline recent advances in using MRI to investigate the glymphatic system. He will also present some of his lab’s recent work investigating glymphatic clearance in preclinical models of motor neurone disease. Associate Professor David Wright is an NHMRC Emerging Leadership Fellow and the Director of Preclinical Imaging in the Department of Neuroscience, Monash University and the Alfred Research Alliance, Alfred Health. His research encompasses the development, application and analysis of advanced magnetic resonance imaging techniques for the study of disease, with a particular emphasis on neurodegenerative disorders. Although less than three years post PhD, he has published over 60 peer-reviewed journal articles in leading neuroscience journals such as Nature Medicine, Brain, and Cerebral Cortex.

SeminarNeuroscience

Peripersonal space (PPS) as a primary interface for self-environment interactions

Andrea Serino
CHUV Lausanne, Switzerland
Jun 28, 2022

Peripersonal space (PPS) defines the portion of space where interactions between our body and the external environment more likely occur. There is no physical boundary defining the PPS with respect to the extrapersonal space, but PPS is continuously constructed by a dedicated neural system integrating external stimuli and tactile stimuli on the body, as a function of their potential interaction. This mechanism represents a primary interface between the individual and the environment. In this talk, I will present most recent evidence and highlight the current debate about the neural and computational mechanisms of PPS, its main functions and properties. I will discuss novel data showing how PPS dynamically shapes to optimize body-environment interactions. I will describe a novel electrophysiological paradigm to study and measure PPS, and show how this has been used to search for a basic marker of potentials of self-environment interaction in newborns and patients with disorders of consciousness. Finally, I will discuss how PPS is also involved in, and in turn shaped by, social interactions. Under these acceptances, I will discuss how PPS plays a key role in self-consciousness.

SeminarNeuroscience

Translation at the Synapse

Erin Schuman
Max Planck Institute for Brain Research, Germany
Jun 1, 2022

The complex morphology of neurons, with synapses located hundreds of microns from the cell body, necessitates the localization of important cell biological machines, including ribosomes, within dendrites and axons. Local translation of mRNAs is important for the function and plasticity of synapses. Using advanced sequencing and imaging techniques we have updated our understanding of the local transcriptome and identified the local translatome- identifying over 800 transcripts for which local translation is the dominant source of protein. In addition, we have explored the unique mechanisms neurons use to meet protein demands at synapses, identifying surprising features of neuronal and synaptic protein synthesis.

SeminarNeuroscienceRecording

What the fly’s eye tells the fly’s brain…and beyond

Gwyneth Card
Janelia Research Campus, HHMI
Jun 1, 2022

Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.

SeminarNeuroscienceRecording

Clinical neuroscience and the heart-brain axis (BACN Mid-career Prize Lecture 2021)

Sarah Garfinkel
Institute of Cognitive Neuroscience, UCL
May 24, 2022

Cognitive and emotional processes are shaped by the dynamic integration of brain and body. A major channel of interoceptive information comes from the heart, where phasic signals are conveyed to the brain to indicate how fast and strong the heart is beating. This talk will discuss how interoceptive processes operate across conscious and unconscious levels to influence emotion and memory. The interoceptive channel is disrupted in distinct ways in individuals with autism and anxiety. Selective interoceptive disturbance is related to symptomatology including dissociation and the transdiagnostic expression of anxiety. Interoceptive training can reduce anxiety, with enhanced interoceptive precision associated with greater insula connectivity following targeted interoceptive feedback. The discrete cardiac effects on emotion and cognition have broad relevance to clinical neuroscience, with implications for peripheral treatment targets and behavioural interventions.

SeminarNeuroscienceRecording

Why do some animals have more than two eyes?

Lauren Sumner-Rooney
Leibniz Institute for Research on Evolution and Biodiversity
May 9, 2022

The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.

SeminarNeuroscience

It’s not over our heads: Why human language needs a body

Michał B. Paradowski
Institute of Applied Linguistics, University of Warsaw
May 9, 2022

n the ‘orthodox’ view, cognition has been seen as manipulation of symbolic, mental representations, separate from the body. This dualist Cartesian approach characterised much of twentieth-century thought and is still taken for granted by many people today. Language, too, has for a long time been treated across scientific domains as a system operating largely independently from perception, action, and the body (articulatory-perceptual organs notwithstanding). This could lead one into believing that to emulate linguistic behaviour, it would suffice to develop ‘software’ operating on abstract representations that would work on any computational machine. Yet the brain is not the sole problem-solving resource we have at our disposal. The disembodied picture is inaccurate for numerous reasons, which will be presented addressing the issue of the indissoluble link between cognition, language, body, and environment in understanding and learning. The talk will conclude with implications and suggestions for pedagogy, relevant for disciplines as diverse as instruction in language, mathematics, and sports.

SeminarNeuroscienceRecording

Brain-body interactions that modulate fear

Alexandra Klein
Kheirbeck lab, UCSF
Mar 30, 2022

In most animals including in humans, emotions occur together with changes in the body, such as variations in breathing or heart rate, sweaty palms, or facial expressions. It has been suggested that this interoceptive information acts as a feedback signal to the brain, enabling adaptive modulation of emotions that is essential for survival. As such, fear, one of our basic emotions, must be kept in a functional balance to minimize risk-taking while allowing for the pursuit of essential needs. However, the neural mechanisms underlying this adaptive modulation of fear remain poorly understood. In this talk, I want to present and discuss the data from my PhD work where we uncover a crucial role for the interoceptive insular cortex in detecting changes in heart rate to maintain an equilibrium between the extinction and maintenance of fear memories in mice.

SeminarNeuroscience

Lifestyle, cardiovascular health, and the brain

Filip Swirski
Icahn School of Medicine, MOUNT SINAI, NEW YORK, NY, USA
Mar 29, 2022

Lifestyle factors such as sleep, diet, stress, and exercise, profoundly influence cardiovascular health. Seeking to understand how lifestyle affects our biology is important for at least two reasons. First, it can expose a particular lifestyle’s biological impact, which can be leveraged for adopting specific public health policies. Second, such work may identify crucial molecular mechanisms central to how the body adapts to our environments. These insights can then be used to improve our lives. In this talk, I will focus on recent work in the lab exploring how lifestyle factors influence cardiovascular health. I will show how combining tools of neuroscience, hematology, immunology, and vascular biology helps us better understand how the brain shapes leukocytes in response to environmental perturbations. By “connecting the dots” from the brain to the vessel wall, we can begin to elucidate how lifestyle can both maintain and perturb salutogenesis.

SeminarNeuroscienceRecording

Interpersonal synchrony of body/brain, Solo & Team Flow

Shinsuke Shimojo
California Institute of Technology
Jan 28, 2022

Flow is defined as an altered state of consciousness with excessive attention and enormous sense of pleasure, when engaged in a challenging task, first postulated by a psychologist, the late M. Csikszentmihayli. The main focus of this talk will be “Team Flow,” but there were two lines of previous studies in our laboratory as its background. First is inter-body and inter-brain coordination/synchrony between individuals. Considering various rhythmic echoing/synchronization phenomena in animal behavior, it could be regarded as the biological, sub-symbolic and implicit origin of social interactions. The second line of precursor research is on the state of Solo Flow in game playing. We employed attenuation of AEP (Auditory Evoked Potential) to task-irrelevant sound probes as an objective-neural indicator of such a Flow status, and found that; 1) Mutual link between the ACC & the TP is critical, and 2) overall, top-down influence is enhanced while bottom-up causality is attenuated. Having these as the background, I will present our latest study of Team Flow in game playing. We found that; 3) the neural correlates of Team Flow is distinctively different from those of Solo Flow nor of non-flow social, 4) the left medial temporal cortex seems to form an integrative node for Team Flow, receiving input related to Solo Flow state from the right PFC and input related to social state from the right IFC, and 5) Intra-brain (dis)similarity of brain activity well predicts (dis)similarity of skills/cognition as well as affinity for inter-brain coherence.

SeminarNeuroscience

Mechanisms of Axon Growth and Regeneration

Frank Bradke
German Center for Neurodegenerative Diseases (DZNE)
Jan 17, 2022

Almost everybody that has seen neurons under a microscope for the first time is fascinated by their beauty and their complex shape. Early on during development, however, there are hardly any signs of their future complexity, but the neurons look round and simple. How do neurons develop their sophisticated structure? How do they initially generate domains that later have distinct function within neuronal circuits, such as the axon? And, can a better understanding of the underlying developmental mechanisms help us in pathological conditions, such as a spinal cord injury, to induce axons to regenerate? Here, I will talk about the cytoskeleton as a driving force for neuronal polarization. We will then explore how cytoskeletal changes help to reactivate the growth program of injured CNS axons to elicit axon regeneration after a spinal cord injury. Finally, we will discuss whether axon growth and synapse formation may be processes in neurons that might exclude each other. Following this developmental hypothesis, it will help us to generate a novel perspective on regeneration failure in the adult CNS, and how we can overcome this failure to induce axon regeneration. Thus, this talk will describe how we can exploit developmental mechanisms to induce axon regeneration after a spinal cord injury.

SeminarNeuroscience

Body Representation in Virtual Reality

Mel Slater
Universitat de Barcelona
Jan 12, 2022

How the brain represents the body is a fundamental question in cognitive neuroscience. Experimental studies are difficult because ‘the body is always there’ (William James). In recent years immersive virtual reality techniques have been introduced that deliver apparent changes to the body extending earlier techniques such as the rubber hand illusion, or substituting the whole body by a virtual one visually collocated with the real body, and seen from a normal first person perspective. This talk will introduce these techniques, and concentrate on how changing the body can change the mind and behaviour, especially in the context of combatting aggression based on gender or race.

SeminarNeuroscience

The circadian clock and neural circuits maintaining body fluid homeostasis

Charles BOURQUE
Professor, Department of Neurology-Neurosurgery, McGill University
Jan 10, 2022

Neurons in the suprachiasmatic nucleus (SCN, the brain’s master circadian clock) display a 24 hour cycle in the their rate of action potential discharge whereby firing rates are high during the light phase and lower during the dark phase. Although it is generally agreed that this cycle of activity is a key mediator of the clock’s neural and humoral output, surprisingly little is known about how changes in clock electrical activity can mediate scheduled physiological changes at different times of day. Using opto- and chemogenetic approaches in mice we have shown that the onset of electrical activity in vasopressin releasing SCN neurons near Zeitgeber time 22 (ZT22) activates glutamatergic thirst-promoting neurons in the OVLT (organum vasculosum lamina terminalis) to promote water intake prior to sleep. This effect is mediated by activity-dependent release of vasopressin from the axon terminals of SCN neurons which acts as a neurotransmitter on OVLT neurons. More recently we found that the clock receives excitatory input from a different subset of sodium sensing neurons in the OVLT. Activation of these neurons by a systemic salt load delivered at ZT19 stimulated the electrical activity of SCN neurons which are normally silent at this time. Remarkably, this effect induced an acute reduction in non-shivering thermogenesis and body temperature, which is an adaptive response to the salt load. These findings provide information regarding the mechanisms by which the SCN promotes scheduled physiological rhythms and indicates that the clock’s output circuitry can also be recruited to mediate an unscheduled homeostatic response.

SeminarNeuroscience

Monash Biomedical Imaging highlights from 2021 and looking ahead to 2022

Gary Egan
Monash Biomedical Imaging
Dec 9, 2021

Despite the challenges COVID-19 has continued to present, Monash Biomedical Imaging (MBI) has had another outstanding year in terms of publications and scientific output. In this webinar, Professor Gary Egan, Director of MBI, will present an overview of MBI’s achievements during 2021 and outline the biomedical imaging research programs and partnerships in 2022. His presentation will cover: • MBI operational and research achievements during 2021 • Biomedical imaging technology developments and research outcomes during 2021 • Linked laboratories and research teams at MBI • Progress on the development of a cyclotron and precision radiopharmaceutical facility at Clayton • Emerging research opportunities at the Monash Heart Hospital in cardiology and cardiovascular disease. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. His substantive body of published work has made a significant impact on the neuroimaging and neuroscience fields. He has sustained success in obtaining significant grants to support his own research and the development of facilities to advance biomedical imaging.

SeminarNeuroscience

​Improving the identification of cardiometabolic risk in early psychosis

Benjamin Perry
University of Cambridge, Department of Psychiatry
Dec 8, 2021

People with chronic schizophrenia die on average 10-15 years sooner than the general population, mostly due to physical comorbidity. While sociodemographic, chronic lifestyle and iatrogenic factors are important contributors to this comorbidity, a growing body of research is beginning to suggest that early signs of cardiometabolic dysfunction may be present from the onset of psychosis in some young adults, and may even be detectable before the onset of psychosis. Given that primary prevention is the best means to prevent the onset of more chronic and severe cardiometabolic phenotypes such as CVD, there is clear need to be able to identify young adults with psychosis who are most at risk of future adverse cardiometabolic outcomes, such that the most intensive interventions can be directed in an informed way to attenuate the risk or even prevent those adverse outcomes from occurring.In this talk, Ben will first outline some recent advances in our understanding of the association between cardiometabolic and schizophrenia spectrum disorders. He will then introduce the field of cardiometabolic risk prediction, and highlight how existing tools developed for older general population adults are unlikely to be suitable for young people with psychosis. Finally, he will discuss the current state of play and the future of the Psychosis Metabolic Risk Calculator (PsyMetRiC), a novel clinically useful cardiometabolic risk prediction algorithm tailored for young people with psychosis, which has been developed and externally validated using data from three psychosis early intervention services in the UK.

ePosterNeuroscience

Beyond linear summation: Three-Body RNN for modeling complex neural and biological systems

Gilad Altshuler, Omri Barak

COSYNE 2025

ePosterNeuroscience

Computation Within and Beyond the Brain - Uncovering Brain-Body-Wide Communication Networks through Imaging Cellular Activity of All Cells in a Vertebrate

Virginia Ruetten, Wei Zheng, Paul Tillberg, Guoqiang Yu, Maneesh Sahani, Misha Ahrens

COSYNE 2025

ePosterNeuroscience

Multiple timescales lead to hierarchical decision-making strategies in brain-body models

Michele Nardin, Ann Hermundstad

COSYNE 2025

ePosterNeuroscience

A novel fluid-body simulator to study the neuromechanical principles of fish schooling

Andrea Ferrario, Alessandro Pazzaglia, Jonathan Arreguit, Alexandros Anastasiadis, Auke Ijspeert

COSYNE 2025

ePosterNeuroscience

Alpha-synuclein pathology from human-derived Lewy body inoculations in the mouse olfactory bulb: Modelling early Parkinson’s disease

Charmaine Helk-Lim, Lianne Robinson, Bettina Platt, Sanna Janhunen, Gernot Riedel

FENS Forum 2024

ePosterNeuroscience

ASIC1a-blocking monoclonal antibody restores hippocampal synaptic neurotransmission and plasticity impairment induced by Aβ

Dalila Mango, Nunzia Maisto, Robert Nisticò

FENS Forum 2024

ePosterNeuroscience

Auto-NRIP antibody is associated with amyotrophic lateral sclerosis disease progression

Show-Li Chen

FENS Forum 2024

ePosterNeuroscience

Autoantibody-induced synaptic and extrasynaptic dysfunction of LGI1 and Kv1 channels as a cause of LGI1 encephalitis

Josefine Sell, Vahid Rahmati, Andreas Ritzau-Jost, Felix Gsell, Sarosh Irani, Stefan Hallermann, Christian Geis

FENS Forum 2024

ePosterNeuroscience

Body temperature regulates glucose metabolism and torpid behavior

Ming-Liang Lee, Ching-Pu Chang, Chitoku Toda, Tomomi Nemoto, Ryosuke Enoki

FENS Forum 2024

ePosterNeuroscience

Caspr2 autoantibody pathology is mediated by altered excitability of sensory dorsal root ganglia

Margarita Habib, Anna-Lena Wießler, Patrik Greguletz, Kathrin Doppler, Carmen Villmann

FENS Forum 2024

ePosterNeuroscience

Characterizing age-related cognitive-motor interactions in individuals with and without autism spectrum disorder using mobile brain-body imaging (MoBI)

Paige Nicklas, John Foxe, Ed Freedman

FENS Forum 2024

ePosterNeuroscience

Chronic potentiation of metabotropic glutamate receptor 2 with a nanobody accelerates amyloidogenesis in Alzheimer’s disease

Pierre-Andre Lafon, Mireille Elodie Tsitokana, Ugo Alenda, Clémentine Eva Philibert, Mathieu Oosterlaken, Marta Cimadevila, Jessica Monnic, Salomé Roux, Julie Bessié, Séverine Diem, Franck Vandermoere, Laurent Prézeau, Patrick Chames, Julie Kniazeff, Sylvie Claeysen, Jean-Philippe Pin, Véronique Perrier, Jianfeng Liu, Philippe Rondard

FENS Forum 2024

ePosterNeuroscience

Circuit motifs for learning with reinforcement prediction in the Drosophila mushroom body

Anna-Maria Jürgensen, Panagiotis Sakagiannis, Martin Paul Nawrot

FENS Forum 2024

ePosterNeuroscience

Cisterna magna infusion of β-amyloid antibody reduces Alzheimer's disease pathology in mouse models

Gehua Wen, Nils Lindblom, Emma Nyberg, Asgeir Kobro-Flatmoen, Tomas Roo, Gunnar Gouras

FENS Forum 2024

ePosterNeuroscience

Cortical representation of facial features and body posture in freely moving rats

Jerneja Rudolf, Jonathan R. Whitlock

FENS Forum 2024

ePosterNeuroscience

Gender differences in estimates of one's own body size depending on % body fat and self-compassion

Anna Yamamotova, Malin Jacobsen, Stine Johannessen, Sandra Sola, Anna Warllos, Hana Papezova

FENS Forum 2024

ePosterNeuroscience

Impairment of AgRP neurons influences body weight, lifespan, and behavior in calorie-restricted mice

Eszter Balkó, Mátyás Kapiller, Boglárka Barsy, Ferenc Matyas, Peter Sotonyi, Tamas L. Horvath, Bence Racz

FENS Forum 2024

ePosterNeuroscience

Improved neuronal surface detection of α2δ proteins by nanobody immunolabeling

Ruslan Stanika, Manuel Hessenberger, Gerald J. Obermair

FENS Forum 2024

ePosterNeuroscience

In-vitro and preclinical theragnostic studies based on novel p-Tau monoclonal antibody for tauopathies

Marta Aramburu Núñez, Lara García-Varela, Antía Custodia, Noemí Gómez-Lado, Mónica Castro-Mosquera, Mariña Rodríguez-Arrizabalaga, Manuel Debasa-Mouce, Juan Manuel Pías-Peleteiro, José Manuel Aldrey, Daniel Romaus-Sanjurjo, Alberto Ouro, Pablo Aguiar, Tomás Sobrino

FENS Forum 2024

ePosterNeuroscience

Inhibition of glial scar formation after spinal cord injury in Noggin conditional knockout mice and by anti-Noggin antibody treatment

Satoru Yamagishi, Shuo Li, Yuki Wakayama, Juntan Li, Yibo Han, Yashuang Ping, Hideyuki Arima, Kohji Sato, Yukihiro Matsuyama

FENS Forum 2024

ePosterNeuroscience

Molecular and behavioral deficits in Lewy body disease models of Caenorhabditis elegans

Rongzhen Li, Xiaobing Huang, Ning Liu, Garry Wong

FENS Forum 2024

ePosterNeuroscience

Nanobody-based FRET biosensors to quantify endogenous group I metabotropic glutamate receptors​​​

Ugo Alenda, Pierre-André Lafon, Damien Meyer, Patrick Chames, Véronique Perrier, Philippe Rondard

FENS Forum 2024

ePosterNeuroscience

Nanobody-based immunotherapy for depression

Thibaut Laboute, Stefano Zucca, Omar Sial, Dipak Patil, Haiyong Peng, Christoph Rader, Jerome Becker, Julie Le Merrer, Appu Singh, Kirill Martemyanov

FENS Forum 2024

ePosterNeuroscience

Nanobody targeting of α2δ proteins to study the molecular synaptic organization

Manuel Hessenberger, Ruslan Stanika, Gerald Obermair

FENS Forum 2024

ePosterNeuroscience

Neuronal SMC3 regulates weight, body composition, and hormonal balance in parallel with sex-dependent effects on anxiety behavior

Saleev Natalia, Bartman Joanna, Getselter Dmitriy, Gutman Roey, Marco Asaf, Evan Elliott

FENS Forum 2024

ePosterNeuroscience

Non-linear and mixed encoding of body movements by individual Purkinje cells

Jorge Enrique Ramirez Buritica, Hugo Marques, Pedro Castelhanito, Diogo Duarte, Ana Gonçalves, Megan R. Carey

FENS Forum 2024

ePosterNeuroscience

A novel platform to embody and maintain in vitro neurons in simulated environments through real-time closed-loop electrophysiological recording and stimulation

Brett Kagan, Azin Azadi, David Hogan, Andrew Doherty, Alon Loeffler, Jackson Gritching, Habibollahi Forough, Candice Desouza, Finn Doensen, Glenn Kirilow, James Churchill, Jake Bowkett, Kwaku Dad Abu-Bonsrah, Brad Watmuff, Seung Hoon Byun, James Stewart, Hon Weng Chong

FENS Forum 2024

ePosterNeuroscience

PIWI-interacting RNA expression regulates pathogenesis in a Caenorhabditis elegans model of Lewy body disease

Xiaobing Huang, Rongzhen Li, Merja Lakso, Gary Wong

FENS Forum 2024

ePosterNeuroscience

Projections from the ventral nucleus of the trapezoid body to all subdivisions of the rat cochlear nucleus

Mario Gómez Martínez, Héctor Rincón, Marcelo Gómez Álvarez, Ricardo Gómez Nieto, Enrique Saldaña

FENS Forum 2024

ePosterNeuroscience

Restorative potential of ciliary body cells in a retinal ganglion cell degeneration model

Marta Fernandez Nogales, Fernando Lucas Ruiz, F. Javier Valiente Soriano, Macarena Herrera, Francisco M. Nadal Nicolás, Marta Agudo Barriuso, Eloisa Herrera

FENS Forum 2024

ePosterNeuroscience

Rhythm of the body, rhythm of the brain: Exploring the relationship between interoception and time perception through transauricular vagus nerve stimulation

Maria Luisa De Martino, Erik Leemhuis, Angelica Scuderi, Mariella Pazzaglia

FENS Forum 2024

ePosterNeuroscience

Role of the dorsal vagal complex in semaglutide-induced reduction of food intake and body weight

Júlia Teixidor Deulofeu, Sebastian Blid Sköldheden, Ferran Font Gironès, Andrej Feješ, Johan Ruud, Linda Engström Ruud

FENS Forum 2024

ePosterNeuroscience

SIK3 in different hypothalamic areas mediates whole-body energy balance

Patricia Seoane-Collazo, Minjeong Park, Tomoyuki Fujiyama, Masashi Yanagisawa, Hiromasa Funato

FENS Forum 2024

ePosterNeuroscience

Time perception and time-space interaction during whole-body rotations

Cecilia Deborah Navarro-Morales, Olga Kuldavletova, Adéla Kola, Thomas Fréret, Gaëlle Quarck, Gilles Clément, Pierre Denise

FENS Forum 2024

ePosterNeuroscience

TRPM4 blocking antibody in neurological disorders

Ping Liao

FENS Forum 2024

body coverage

85 items

Seminar50
ePoster35
Domain spotlight

Explore how body research is advancing inside Neuro.

Visit domain