brain states
Latest
Towards Human Systems Biology of Sleep/Wake Cycles: Phosphorylation Hypothesis of Sleep
The field of human biology faces three major technological challenges. Firstly, the causation problem is difficult to address in humans compared to model animals. Secondly, the complexity problem arises due to the lack of a comprehensive cell atlas for the human body, despite its cellular composition. Lastly, the heterogeneity problem arises from significant variations in both genetic and environmental factors among individuals. To tackle these challenges, we have developed innovative approaches. These include 1) mammalian next-generation genetics, such as Triple CRISPR for knockout (KO) mice and ES mice for knock-in (KI) mice, which enables causation studies without traditional breeding methods; 2) whole-body/brain cell profiling techniques, such as CUBIC, to unravel the complexity of cellular composition; and 3) accurate and user-friendly technologies for measuring sleep and awake states, exemplified by ACCEL, to facilitate the monitoring of fundamental brain states in real-world settings and thus address heterogeneity in human.
Developmentally structured coactivity in the hippocampal trisynaptic loop
The hippocampus is a key player in learning and memory. Research into this brain structure has long emphasized its plasticity and flexibility, though recent reports have come to appreciate its remarkably stable firing patterns. How novel information incorporates itself into networks that maintain their ongoing dynamics remains an open question, largely due to a lack of experimental access points into network stability. Development may provide one such access point. To explore this hypothesis, we birthdated CA1 pyramidal neurons using in-utero electroporation and examined their functional features in freely moving, adult mice. We show that CA1 pyramidal neurons of the same embryonic birthdate exhibit prominent cofiring across different brain states, including behavior in the form of overlapping place fields. Spatial representations remapped across different environments in a manner that preserves the biased correlation patterns between same birthdate neurons. These features of CA1 activity could partially be explained by structured connectivity between pyramidal cells and local interneurons. These observations suggest the existence of developmentally installed circuit motifs that impose powerful constraints on the statistics of hippocampal output.
A transcriptomic axis predicts state modulation of cortical interneurons
Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.
Multiscale modeling of brain states, from spiking networks to the whole brain
Modeling brain mechanisms is often confined to a given scale, such as single-cell models, network models or whole-brain models, and it is often difficult to relate these models. Here, we show an approach to build models across scales, starting from the level of circuits to the whole brain. The key is the design of accurate population models derived from biophysical models of networks of excitatory and inhibitory neurons, using mean-field techniques. Such population models can be later integrated as units in large-scale networks defining entire brain areas or the whole brain. We illustrate this approach by the simulation of asynchronous and slow-wave states, from circuits to the whole brain. At the mesoscale (millimeters), these models account for travelling activity waves in cortex, and at the macroscale (centimeters), the models reproduce the synchrony of slow waves and their responsiveness to external stimuli. This approach can also be used to evaluate the impact of sub-cellular parameters, such as receptor types or membrane conductances, on the emergent behavior at the whole-brain level. This is illustrated with simulations of the effect of anesthetics. The program codes are open source and run in open-access platforms (such as EBRAINS).
NMC4 Short Talk: Two-Photon Imaging of Norepinephrine in the Prefrontal Cortex Shows that Norepinephrine Structures Cell Firing Through Local Release
Norepinephrine (NE) is a neuromodulator that is released from projections of the locus coeruleus via extra-synaptic vesicle exocytosis. Tonic fluctuations in NE are involved in brain states, such as sleep, arousal, and attention. Previously, NE in the PFC was thought to be a homogenous field created by bulk release, but it remains unknown whether phasic (fast, short-term) fluctuations in NE can produce a spatially heterogeneous field, which could then structure cell firing at a fine spatial scale. To understand how spatiotemporal dynamics of norepinephrine (NE) release in the prefrontal cortex affect neuronal firing, we performed a novel in-vivo two-photon imaging experiment in layer ⅔ of the prefrontal cortex using a green fluorescent NE sensor and a red fluorescent Ca2+ sensor, which allowed us to simultaneously observe fine-scale neuronal and NE dynamics in the form of spatially localized fluorescence time series. Using generalized linear modeling, we found that the local NE field differs from the global NE field in transient periods of decorrelation, which are influenced by proximal NE release events. We used optical flow and pattern analysis to show that release and reuptake events can occur at the same location but at different times, and differential recruitment of release and reuptake sites over time is a potential mechanism for creating a heterogeneous NE field. Our generalized linear models predicting cellular dynamics show that the heterogeneous local NE field, and not the global field, drives cell firing dynamics. These results point to the importance of local, small-scale, phasic NE fluctuations for structuring cell firing. Prior research suggests that these phasic NE fluctuations in the PFC may play a role in attentional shifts, orienting to sensory stimuli in the environment, and in the selective gain of priority representations during stress (Mather, Clewett et al. 2016) (Aston-Jones and Bloom 1981).
Information Dynamics in the Hippocampus and Cortex and their alterations in epilepsy
Neurological disorders share common high-level alterations, such as cognitive deficits, anxiety, and depression. This raises the possibility of fundamental alterations in the way information conveyed by neural firing is maintained and dispatched in the diseased brain. Using experimental epilepsy as a model of neurological disorder we tested the hypothesis of altered information processing, analyzing how neurons in the hippocampus and the entorhinal cortex store and exchange information during slow and theta oscillations. We equate the storage and sharing of information to low level, or primitive, information processing at the algorithmic level, the theoretical intermediate level between structure and function. We find that these low-level processes are organized into substates during brain states marked by theta and slow oscillations. Their internal composition and organization through time are disrupted in epilepsy, losing brain state-specificity, and shifting towards a regime of disorder in a brain region dependent manner. We propose that the alteration of information processing at an algorithmic level may be a mechanism behind the emergent and widespread co-morbidities associated with epilepsy, and perhaps other disorders.
Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia
General anesthesia is a drug-induced, reversible condition comprised of five behavioral states: unconsciousness, amnesia (loss of memory), antinociception (loss of pain sensation), akinesia (immobility), and hemodynamic stability with control of the stress response. Our work shows that a primary mechanism through which anesthetics create these altered states of arousal is by initiating and maintaining highly structured oscillations. These oscillations impair communication among brain regions. We illustrate this effect by presenting findings from our human studies of general anesthesia using high-density EEG recordings and intracranial recordings. These studies have allowed us to give a detailed characterization of the neurophysiology of loss and recovery of consciousness due to propofol. We show how these dynamics change systematically with different anesthetic classes and with age. As a consequence, we have developed a principled, neuroscience-based paradigm for using the EEG to monitor the brain states of patients receiving general anesthesia. We demonstrate that the state of general anesthesia can be rapidly reversed by activating specific brain circuits. Finally, we demonstrate that the state of general anesthesia can be controlled using closed loop feedback control systems. The success of our research has depended critically on tight coupling of experiments, signal processing research and mathematical modeling.
Awakening: Predicting external stimulation to force transitions between different brain states
Inferring Brain Rhythm Circuitry and Burstiness
Bursts in gamma and other frequency ranges are thought to contribute to the efficiency of working memory or communication tasks. Abnormalities in bursts have also been associated with motor and psychiatric disorders. The determinants of burst generation are not known, specifically how single cell and connectivity parameters influence burst statistics and the corresponding brain states. We first present a generic mathematical model for burst generation in an excitatory-inhibitory (EI) network with self-couplings. The resulting equations for the stochastic phase and envelope of the rhythm’s fluctuations are shown to depend on only two meta-parameters that combine all the network parameters. They allow us to identify different regimes of amplitude excursions, and to highlight the supportive role that network finite-size effects and noisy inputs to the EI network can have. We discuss how burst attributes, such as their durations and peak frequency content, depend on the network parameters. In practice, the problem above follows the a priori challenge of fitting such E-I spiking networks to single neuron or population data. Thus, the second part of the talk will discuss a novel method to fit mesoscale dynamics using single neuron data along with a low-dimensional, and hence statistically tractable, single neuron model. The mesoscopic representation is obtained by approximating a population of neurons as multiple homogeneous ‘pools’ of neurons, and modelling the dynamics of the aggregate population activity within each pool. We derive the likelihood of both single-neuron and connectivity parameters given this activity, which can then be used to either optimize parameters by gradient ascent on the log-likelihood, or to perform Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. We illustrate this approach using an E-I network of generalized integrate-and-fire neurons for which mesoscopic dynamics have been previously derived. We show that both single-neuron and connectivity parameters can be adequately recovered from simulated data.
Neuromodulation of synaptic plasticity rules avoids homeostatic reset of synaptic weights during switches in brain states
COSYNE 2022
Neuromodulation of synaptic plasticity rules avoids homeostatic reset of synaptic weights during switches in brain states
COSYNE 2022
Distinct brain states modulate visual cortical processing in mouse
COSYNE 2023
Multi-timescale cortical functional connectivity across brain states
FENS Forum 2024
brain states coverage
13 items