bursts
Latest
Silences, Spikes and Bursts: Three-Part Knot of the Neural Code
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labeling action potentials emitted at a particularly high frequency with a metonym – bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. In this talk, I will discuss the implications of seeing the neural code as having three syllables: silences, spikes and bursts. In particular, I will describe recent theoretical and experimental results that implicate bursting in the implementation of top-down attention and the coordination of learning.
A neural mechanism for terminating decisions
The brain makes decisions by accumulating evidence until there is enough to stop and choose. Neural mechanisms of evidence accumulation are well established in association cortex, but the site and mechanism of termination is unknown. Here, we elucidate a mechanism for termination by neurons in the primate superior colliculus. We recorded simultaneously from neurons in lateral intraparietal cortex (LIP) and the superior colliculus (SC) while monkeys made perceptual decisions, reported by eye-movements. Single-trial analyses revealed distinct dynamics: LIP tracked the accumulation of evidence on each decision, and SC generated one burst at the end of the decision, occasionally preceded by smaller bursts. We hypothesized that the bursts manifest a threshold mechanism applied to LIP activity to terminate the decision. Focal inactivation of SC produced behavioral effects diagnostic of an impaired threshold sensor, requiring a stronger LIP signal to terminate a decision. The results reveal the transformation from deliberation to commitment.
NaV Long-term Inactivation Regulates Adaptation in Place Cells and Depolarization Block in Dopamine Neurons
In behaving rodents, CA1 pyramidal neurons receive spatially-tuned depolarizing synaptic input while traversing a specific location within an environment called its place. Midbrain dopamine neurons participate in reinforcement learning, and bursts of action potentials riding a depolarizing wave of synaptic input signal rewards and reward expectation. Interestingly, slice electrophysiology in vitro shows that both types of cells exhibit a pronounced reduction in firing rate (adaptation) and even cessation of firing during sustained depolarization. We included a five state Markov model of NaV1.6 (for CA1) and NaV1.2 (for dopamine neurons) respectively, in computational models of these two types of neurons. Our simulations suggest that long-term inactivation of this channel is responsible for the adaptation in CA1 pyramidal neurons, in response to triangular depolarizing current ramps. We also show that the differential contribution of slow inactivation in two subpopulations of midbrain dopamine neurons can account for their different dynamic ranges, as assessed by their responses to similar depolarizing ramps. These results suggest long-term inactivation of the sodium channel is a general mechanism for adaptation.
Spontaneous activity competes with externally evoked responses in sensory cortex
The interaction between spontaneously and externally evoked neuronal activity is fundamental for a functional brain. Increasing evidence suggests that bursts of high-power oscillations in the 15-30 Hz beta-band represent activation of resting state networks and can mask perception of external cues. Yet demonstration of the effect of beta power modulation on perception in real-time is missing, and little is known about the underlying mechanism. In this talk I will present the methods we developed to fill this gap together with our recent results. We used a closed-loop stimulus-intensity adjustment system based on online burst-occupancy analyses in rats involved in a forepaw vibrotactile detection task. We found that the masking influence of burst-occupancy on perception can be counterbalanced in real-time by adjusting the vibration amplitude. Offline analysis of firing-rates and local field potentials across cortical layers and frequency bands confirmed that beta-power in the somatosensory cortex anticorrelated with sensory evoked responses. Mechanistically, bursts in all bands were accompanied by transient synchronization of cell assemblies, but only beta-bursts were followed by a reduction of firing-rate. Our closed loop approach reveals that spontaneous beta-bursts reflect a dynamic state that competes with external stimuli.
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits
Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.
Inferring Brain Rhythm Circuitry and Burstiness
Bursts in gamma and other frequency ranges are thought to contribute to the efficiency of working memory or communication tasks. Abnormalities in bursts have also been associated with motor and psychiatric disorders. The determinants of burst generation are not known, specifically how single cell and connectivity parameters influence burst statistics and the corresponding brain states. We first present a generic mathematical model for burst generation in an excitatory-inhibitory (EI) network with self-couplings. The resulting equations for the stochastic phase and envelope of the rhythm’s fluctuations are shown to depend on only two meta-parameters that combine all the network parameters. They allow us to identify different regimes of amplitude excursions, and to highlight the supportive role that network finite-size effects and noisy inputs to the EI network can have. We discuss how burst attributes, such as their durations and peak frequency content, depend on the network parameters. In practice, the problem above follows the a priori challenge of fitting such E-I spiking networks to single neuron or population data. Thus, the second part of the talk will discuss a novel method to fit mesoscale dynamics using single neuron data along with a low-dimensional, and hence statistically tractable, single neuron model. The mesoscopic representation is obtained by approximating a population of neurons as multiple homogeneous ‘pools’ of neurons, and modelling the dynamics of the aggregate population activity within each pool. We derive the likelihood of both single-neuron and connectivity parameters given this activity, which can then be used to either optimize parameters by gradient ascent on the log-likelihood, or to perform Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. We illustrate this approach using an E-I network of generalized integrate-and-fire neurons for which mesoscopic dynamics have been previously derived. We show that both single-neuron and connectivity parameters can be adequately recovered from simulated data.
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits
Synaptic plasticity is believed to be a key physiological mechanism for learning. It is well-established that it depends on pre and postsynaptic activity. However, models that rely solely on pre and postsynaptic activity for synaptic changes have, to date, not been able to account for learning complex tasks that demand hierarchical networks. Here, we show that if synaptic plasticity is regulated by high-frequency bursts of spikes, then neurons higher in the hierarchy can coordinate the plasticity of lower-level connections. Using simulations and mathematical analyses, we demonstrate that, when paired with short-term synaptic dynamics, regenerative activity in the apical dendrites, and synaptic plasticity in feedback pathways, a burst-dependent learning rule can solve challenging tasks that require deep network architectures. Our results demonstrate that well-known properties of dendrites, synapses, and synaptic plasticity are sufficient to enable sophisticated learning in hierarchical circuits.
Anatomically resolved oscillatory bursts orchestrate visual thalamocortical activity during naturalistic stimulus viewing
COSYNE 2025
Coordinated Multi-frequency Oscillatory Bursts Enable Time-structured Dynamic Information Transfer
COSYNE 2025
Bursts of high-frequency oscillations underlie encoding and recall of specific memory items
FENS Forum 2024
Distinct oscillatory dynamics in the rat medial prefrontal cortex suggest beta bursts as a potential mediator of executive control
FENS Forum 2024
Extrasynaptic NMDARs activation by co-agonist glycine controls the occurrence of bursts in nigral dopamine neurons
FENS Forum 2024
High-frequency, sinusoidal bursts activate nerve fibers in the earthworm
FENS Forum 2024
Neural bursts and firing regularity as convergent neural dynamics in globus pallidus for genetic dystonia syndromes
FENS Forum 2024
bursts coverage
14 items