CA1 region
Latest
Memory formation in hippocampal microcircuit
The centre of memory is the medial temporal lobe (MTL) and especially the hippocampus. In our research, a more flexible brain-inspired computational microcircuit of the CA1 region of the mammalian hippocampus was upgraded and used to examine how information retrieval could be affected under different conditions. Six models (1-6) were created by modulating different excitatory and inhibitory pathways. The results showed that the increase in the strength of the feedforward excitation was the most effective way to recall memories. In other words, that allows the system to access stored memories more accurately.
Learning produces a hippocampal cognitive map in the form of an orthogonalized state machine
Cognitive maps confer animals with flexible intelligence by representing spatial, temporal, and abstract relationships that can be used to shape thought, planning, and behavior. Cognitive maps have been observed in the hippocampus, but their algorithmic form and the processes by which they are learned remain obscure. Here, we employed large-scale, longitudinal two-photon calcium imaging to record activity from thousands of neurons in the CA1 region of the hippocampus while mice learned to efficiently collect rewards from two subtly different versions of linear tracks in virtual reality. The results provide a detailed view of the formation of a cognitive map in the hippocampus. Throughout learning, both the animal behavior and hippocampal neural activity progressed through multiple intermediate stages, gradually revealing improved task representation that mirrored improved behavioral efficiency. The learning process led to progressive decorrelations in initially similar hippocampal neural activity within and across tracks, ultimately resulting in orthogonalized representations resembling a state machine capturing the inherent struture of the task. We show that a Hidden Markov Model (HMM) and a biologically plausible recurrent neural network trained using Hebbian learning can both capture core aspects of the learning dynamics and the orthogonalized representational structure in neural activity. In contrast, we show that gradient-based learning of sequence models such as Long Short-Term Memory networks (LSTMs) and Transformers do not naturally produce such orthogonalized representations. We further demonstrate that mice exhibited adaptive behavior in novel task settings, with neural activity reflecting flexible deployment of the state machine. These findings shed light on the mathematical form of cognitive maps, the learning rules that sculpt them, and the algorithms that promote adaptive behavior in animals. The work thus charts a course toward a deeper understanding of biological intelligence and offers insights toward developing more robust learning algorithms in artificial intelligence.
Extrinsic control and intrinsic computation in the hippocampal CA1 network
A key issue in understanding circuit operations is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. Several studies have lesioned or silenced inputs to area CA1 of the hippocampus - either area CA3 or the entorhinal cortex and examined the effect on CA1 pyramidal cells. However, the types of the reported physiological impairments vary widely, primarily because simultaneous manipulations of these redundant inputs have never been performed. In this study, I combined optogenetic silencing of unilateral and bilateral mEC, of the local CA1 region, and performed bilateral pharmacogenetic silencing of CA3. I combined this with high spatial resolution extracellular recordings along the CA1-dentate axis. Silencing the medial entorhinal largely abolished extracellular theta and gamma currents in CA1, without affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. Yet, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields. In contrast to these results, unilateral mEC manipulations that were ineffective in impacting place cells during awake behavior were found to alter sharp-wave ripple sequences activated during sleep. Thus, intrinsic excitatory-inhibitory circuits within CA1 can generate neuronal assemblies in the absence of external inputs, although external synaptic inputs are critical to reconfigure (remap) neuronal assemblies in a brain-state dependent manner.
Extrinsic control and autonomous computation in the hippocampal CA1 circuit
In understanding circuit operations, a key issue is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. Because pyramidal cells in CA1 do not have local recurrent projections, it is currently assumed that firing in CA1 is inherited from its inputs – thus, entorhinal inputs provide communication with the rest of the neocortex and the outside world, whereas CA3 inputs provide internal and past memory representations. Several studies have attempted to prove this hypothesis, by lesioning or silencing either area CA3 or the entorhinal cortex and examining the effect of firing on CA1 pyramidal cells. Despite the intense and careful work in this research area, the magnitudes and types of the reported physiological impairments vary widely across experiments. At least part of the existing variability and conflicts is due to the different behavioral paradigms, designs and evaluation methods used by different investigators. Simultaneous manipulations in the same animal or even separate manipulations of the different inputs to the hippocampal circuits in the same experiment are rare. To address these issues, I used optogenetic silencing of unilateral and bilateral mEC, of the local CA1 region, and performed bilateral pharmacogenetic silencing of the entire CA3 region. I combined this with high spatial resolution recording of local field potentials (LFP) in the CA1-dentate axis and simultaneously collected firing pattern data from thousands of single neurons. Each experimental animal had up to two of these manipulations being performed simultaneously. Silencing the medial entorhinal (mEC) largely abolished extracellular theta and gamma currents in CA1, without affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. Yet, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields, and reliable assembly expression as in the intact mouse. Thus, the CA1 network can maintain autonomous computation to support coordinated place cell assemblies without reliance on its inputs, yet these inputs can effectively reconfigure and assist in maintaining stability of the CA1 map.
Using evolutionary algorithms to explore single-cell heterogeneity and microcircuit operation in the hippocampus
The hippocampus-entorhinal system is critical for learning and memory. Recent cutting-edge single-cell technologies from RNAseq to electrophysiology are disclosing a so far unrecognized heterogeneity within the major cell types (1). Surprisingly, massive high-throughput recordings of these very same cells identify low dimensional microcircuit dynamics (2,3). Reconciling both views is critical to understand how the brain operates. " "The CA1 region is considered high in the hierarchy of the entorhinal-hippocampal system. Traditionally viewed as a single layered structure, recent evidence has disclosed an exquisite laminar organization across deep and superficial pyramidal sublayers at the transcriptional, morphological and functional levels (1,4,5). Such a low-dimensional segregation may be driven by a combination of intrinsic, biophysical and microcircuit factors but mechanisms are unknown." "Here, we exploit evolutionary algorithms to address the effect of single-cell heterogeneity on CA1 pyramidal cell activity (6). First, we developed a biophysically realistic model of CA1 pyramidal cells using the Hodgkin-Huxley multi-compartment formalism in the Neuron+Python platform and the morphological database Neuromorpho.org. We adopted genetic algorithms (GA) to identify passive, active and synaptic conductances resulting in realistic electrophysiological behavior. We then used the generated models to explore the functional effect of intrinsic, synaptic and morphological heterogeneity during oscillatory activities. By combining results from all simulations in a logistic regression model we evaluated the effect of up/down-regulation of different factors. We found that muyltidimensional excitatory and inhibitory inputs interact with morphological and intrinsic factors to determine a low dimensional subset of output features (e.g. phase-locking preference) that matches non-fitted experimental data.
The effect of ergothioneine on synaptic plasticity in the hippocampal CA1 region using Alzheimer’s disease mouse model
FENS Forum 2024
Fast and (sometimes) furious: Oxytocinergic modulation of fast-spiking interneurons in hippocampal CA1 region and caudoputamen of mice
FENS Forum 2024
Optogenetically de-energized mitochondria of parvalbumin-positive interneurons impair spatial properties within the CA1 region of the hippocampus
FENS Forum 2024
CA1 region coverage
8 items