cell loss
Latest
Converging mechanisms of epileptogenesis after brain injury
Traumatic brain injury (TBI), a leading cause of acquired epilepsy, results in primary cellular injury as well as secondary neurophysiological and inflammatory responses which contribute to epileptogenesis. I will present our recent studies identifying a role for neuro-immune interactions, specifically, the innate immune receptor Toll-like receptor 4 (TLR4), in enhancing network excitability and cell loss in hippocampal dentate gyrus early after concussive brain injury. I will describe results indicating that the transient post-traumatic increases in dentate neurogenesis which occurs during the same early post-injury period augments dentate network excitability and epileptogenesis. I will provide evidence for the beneficial effects of targeting TLR4 and neurogenesis early after brain injury in limiting epileptogenesis. We will discuss potential mechanisms for convergence of the post-traumatic neuro-immune and neurogenic changes and the implications for therapies to reduce neurological deficits and epilepsy after brain injury.
Numbing intraneuronal Tau levels to prevent neurodegeneration in tauopathies
Intraneuronal accumulation of the microtubule associated protein Tau is largely recognized as an important toxic factor linked to neuronal cell death in Alzheimer’s disease and tauopathies. While there has been progress uncovering mechanisms leading to the formation of toxic Tau tangles, less is known about how intraneuronal Tau levels are regulated in health and disease. Here, I will discuss our recent work showing that the intracellular trafficking adaptor protein Numb is critical to control intraneuronal Tau levels. Inactivation of Numb in retinal ganglion cells increases monomeric and oligomeric Tau levels and leads to axonal blebbing in optic nerves, followed by significant neuronal cell loss in old mice. Interestingly, overexpression of the long isoform of Numb (Numb-72) decreases intracellular Tau levels by promoting exocytosis of monomeric Tau. In TauP301S and triple transgenic AD mouse models, expression of Numb-72 in RGCs reduces the number of axonal blebs and prevents neurodegeneration. Finally, inactivation of Numb in TauP301S mice accelerates neurodegeneration in both the retina and spinal cord and leads to precocious paralysis. Taken together, these results uncover Numb as a essential regulator of Tau homeostasis in neurons and as a potential therapeutic agent for AD and tauopathies.
Interneuron desynchronization and breakdown of long-term place cell stability in temporal lobe epilepsy
Temporal lobe epilepsy is associated with memory deficits but the circuit mechanisms underlying these cognitive disabilities are not understood. We used electrophysiological recordings, open-source wire-free miniaturized microscopy and computational modeling to probe these deficits in a model of temporal lobe epilepsy. We find desynchronization of dentate gyrus interneurons with CA1 interneurons during theta oscillations and a loss of precision and stability of place fields. We also find that emergence of place cell dysfunction is delayed, providing a potential temporal window for treatments. Computation modeling shows that desynchronization rather than interneuron cell loss can drive place cell dysfunction. Future studies will uncover cell types driving these changes and transcriptional changes that may be driving dysfunction.
Mitochondrial dysfunction and Purkinje cell loss in Christianson syndrome
FENS Forum 2024
cell loss coverage
4 items