TopicNeuro

cerebral palsy

2 Seminars1 ePoster

Latest

SeminarNeuroscience

Structural & Functional Neuroplasticity in Children with Hemiplegia

Christos Papadelis
University of Texas at Arlington
Feb 21, 2025

About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.

SeminarNeuroscienceRecording

Affordable Robots/Computer Systems to Identify, Assess, and Treat Impairment After Brain Injury

Michelle Johnson
University of Pennsylvania, Department of Physical Medicine and Rehabilitation and Department of BioEngineering
Oct 7, 2020

Non-traumatic brain injury due to stroke, cerebral palsy and HIV often result in serious long-term disability worldwide, affecting more than 150 million persons globally; with the majority of persons living in low and middle income countries. These diseases often result in varying levels of motor and cognitive impairment due to brain injury which then affects the person’s ability to complete activities of daily living and fully participate in society. Increasingly advanced technologies are being used to support identification, diagnosis, assessment, and therapy for patients with brain injury. Specifically, robot and mechatronic systems can provide patients, physicians and rehabilitation clinical providers with additional support to care for and improve the quality of life of children and adults with motor and cognitive impairment. This talk will provide a brief introduction to the area of rehabilitation robotics and, via case studies, illustrate how computer/technology-assisted rehabilitation systems can be developed and used to assess motor and cognitive impairment, detect early evidence of functional impairment, and augment therapy in high and low-resource settings.

ePosterNeuroscience

Corticocerebellar tracts and their relationship to anticipatory control deficits in children with cerebral palsy: A diffusion neuroimaging study

Ophelie Martinie, Philippe Karan, Maxime Descoteaux, Catherine Mercier, Maxime, T. Robert

FENS Forum 2024

cerebral palsy coverage

3 items

Seminar2
ePoster1
Domain spotlight

Explore how cerebral palsy research is advancing inside Neuro.

Visit domain