Cognitive Neuroscience
Latest
SISSA Neuroscience department
The Neuroscience Department of the International School for Advanced Studies (SISSA; https://www.sissa.it/research/neuroscience) invites expressions of interest from scientists from various fields of Neuroscience for multiple tenure-track positions with anticipated start in 2025. Ongoing neuroscience research at SISSA includes cognitive neuroscience, computational and theoretical neuroscience, systems neuroscience, molecular and cellular research as well as genomics and genetics. The Department intends to potentiate its activities in these fields and to strengthen cross-field interactions. Expressions of interest from scientists in any of these fields are welcome. The working and teaching language of SISSA is English. This is an equal opportunity career initiative and we encourage applications from qualified women, racial and ethnic minorities, and persons with disabilities. Candidates should have a PhD in a relevant field and a proven record of research achievements. A clear potential to promote and lead research activities, and a specific interest in training and supervising PhD students is essential. Interested colleagues should present an original and innovative plan for their independent future research. We encourage both proposals within existing fields at SISSA as well as novel ideas outside of those or spanning various topics and methodologies of Neuroscience. SISSA is an international school promoting basic and applied research in Neuroscience, Mathematics and Physics and dedicated to the training of PhD students. Lab space and other resources will be commensurate with the appointment. Shared facilities include cell culture rooms, viral vector facilities, confocal microscopes, animal facilities, molecular and biochemical facilities, human cognition labs with EEG, TMS, and eye tracking systems, mechatronics workshop, and computing facilities. Agreements with national and international MRI scanning facilities are also in place. SISSA encourages fruitful exchanges between neuroscientists and other researchers including data scientists, physicists and mathematicians. Interested colleagues are invited to send a single pdf file including a full CV, a brief description of past and future research interests (up to 1,000 words), and the names of three referees to neuro.search@sissa.it. Selected candidates will be invited for an online or in-person seminar and 1- on-1 meetings in summer/autumn 2024. Deadline: A first evaluation round will consider all applications submitted before 15 May 2024. Later applications might be considered if no suitable candidates have been identified yet.
Burcu Ayşen Ürgen
Bilkent University invites applications for multiple open-rank faculty positions in the Department of Neuroscience. The department plans to expand research activities in certain focus areas and accordingly seeks applications from promising or established scholars who have worked in the following or related fields: Cellular/molecular/developmental neuroscience with a strong emphasis on research involving animal models. Systems/cognitive/computational neuroscience with a strong emphasis on research involving emerging data-driven approaches, including artificial intelligence, robotics, brain-machine interfaces, virtual reality, computational imaging, and theoretical modeling. Candidates with a research focus in those areas whose research has a neuroimaging component are particularly encouraged to apply. The Department’s interdisciplinary Graduate Program in Neuroscience that offers Master's and PhD degrees was established in 2014. The department is affiliated with Bilkent’s Aysel Sabuncu Brain Research Center (ASBAM) and the National Magnetic Resonance Research Center (UMRAM). Faculty affiliated with the department has the privilege to access state-of-the-art research facilities in these centers, including animal facilities, cellular/molecular laboratory infrastructure, psychophysics laboratories, eyetracking laboratories, EEG laboratories, a human-robot interaction laboratory, and two MRI scanners (3T and 1.5T).
N/A
The Neuroscience Department of the International School for Advanced Studies (SISSA) invites expressions of interest from scientists for multiple tenure-track positions in various fields of Neuroscience with anticipated start in 2025. The Department aims to enhance its activities in cognitive neuroscience, computational and theoretical neuroscience, systems neuroscience, molecular and cellular research, genomics, and genetics, and to strengthen cross-field interactions. The working and teaching language at SISSA is English. This is an equal opportunity career initiative.
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
What it’s like is all there is: The value of Consciousness
Over the past thirty years or so, cognitive neuroscience has made spectacular progress understanding the biological mechanisms of consciousness. Consciousness science, as this field is now sometimes called, was not only inexistent thirty years ago, but its very name seemed like an oxymoron: how can there be a science of consciousness? And yet, despite this scepticism, we are now equipped with a rich set of sophisticated behavioural paradigms, with an impressive array of techniques making it possible to see the brain in action, and with an ever-growing collection of theories and speculations about the putative biological mechanisms through which information processing becomes conscious. This is all good and fine, even promising, but we also seem to have thrown the baby out with the bathwater, or at least to have forgotten it in the crib: consciousness is not just mechanisms, it’s what it feels like. In other words, while we know thousands of informative studies about access-consciousness, we have little in the way of phenomenal consciousness. But that — what it feels like — is truly what “consciousness” is about. Understanding why it feels like something to be me and nothing (panpsychists notwithstanding) for a stone to be a stone is what the field has always been after. However, while it is relatively easy to study access-consciousness through the contrastive approach applied to reports, it is much less clear how to study phenomenology, its structure and its function. Here, I first overview work on what consciousness does (the "how"). Next, I ask what difference feeling things makes and what function phenomenology might play. I argue that subjective experience has intrinsic value and plays a functional role in everything that we do.
Introducing the 'Cognitive Neuroscience & Neurotechnolog' group: From real-time fMRI to layer-fMRI & back
Sophie Scott - The Science of Laughter from Evolution to Neuroscience
Keynote Address to British Association of Cognitive Neuroscience, London, 10th September 2024
Applied cognitive neuroscience to improve learning and therapeutics
Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.
Imaging the subcortex; Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders
We are very much looking forward to host Francisca Ferreira and Birte Forstmann on December 14th, 2023, at noon ET / 6PM CET. Francisca Ferreira is a PhD student and Neurosurgery trainee at the University College of London Queen Square Institute of Neurology and a Royal College of Surgeons “Emerging Leaders” program laureate. Her presentation title will be: “Microstructural and connectivity correlates of outcome variability in functional neurosurgery for movement disorders”. Birte Forstmann, PhD, is the Director of the Amsterdam Brain and Cognition Center, a Professor of Cognitive Neuroscience at the University of Amsterdam, and a Professor by Special Appointment of Neuroscientific Testing of Psychological Models at the University of Leiden. Besides her scientific presentation (“Imaging the human subcortex”), she will give us a glimpse at the “Person behind the science”. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Self as Processes (BACN Mid-career Prize Lecture 2023)
An understanding of the self helps explain not only human thoughts, feelings, attitudes but also many aspects of everyday behaviour. This talk focuses on a viewpoint - self as processes. This viewpoint emphasizes the dynamics of the self that best connects with the development of the self over time and its realist orientation. We are combining psychological experiments and data mining to comprehend the stability and adaptability of the self across various populations. In this talk, I draw on evidence from experimental psychology, cognitive neuroscience, and machine learning approaches to demonstrate why and how self-association affects cognition and how it is modulated by various social experiences and situational factors
Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control
On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Investigating semantics above and beyond language: a clinical and cognitive neuroscience approach
The ability to build, store, and manipulate semantic representations lies at the core of all our (inter)actions. Combining evidence from cognitive neuroimaging and experimental neuropsychology, I study the neurocognitive correlates of semantic knowledge in relation to other cognitive functions, chiefly language. In this talk, I will start by reviewing neuroimaging findings supporting the idea that semantic representations are encoded in distributed yet specialized cortical areas (1), and rapidly recovered (2) according to the requirement of the task at hand (3). I will then focus on studies conducted in neurodegenerative patients, offering a unique window on the key role played by a structurally and functionally heterogeneous piece of cortex: the anterior temporal lobe (4,5). I will present pathological, neuroimaging, cognitive, and behavioral data illustrating how damages to language-related networks can affect or spare semantic knowledge as well as possible paths to functional compensation (6,7). Time permitting, we will discuss the neurocognitive dissociation between nouns and verbs (8) and how verb production is differentially impacted by specific language impairments (9).
Fidelity and Replication: Modelling the Impact of Protocol Deviations on Effect Size
Cognitive science and cognitive neuroscience researchers have agreed that the replication of findings is important for establishing which ideas (or theories) are integral to the study of cognition across the lifespan. Recently, high-profile papers have called into question findings that were once thought to be unassailable. Much attention has been paid to how p-hacking, publication bias, and sample size are responsible for failed replications. However, much less attention has been paid to the fidelity by which researchers enact study protocols. Researchers conducting education or clinical trials are aware of the importance in fidelity – or the extent to which the protocols are delivered in the same way across participants. Nevertheless, this idea has not been applied to cognitive contexts. This seminar discusses factors that impact the replicability of findings alongside recent models suggesting that even small fidelity deviations have real impacts on the data collected.
Bridging clinical and cognitive neuroscience together to investigate semantics, above and beyond language
We will explore how neuropsychology can be leveraged to directly test cognitive neuroscience theories using the case of frontotemporal dementias affecting the language network. Specifically, we will focus on pathological, neuroimaging, and cognitive data from primary progressive aphasia. We will see how they can help us investigate the reading network, semantic knowledge organisation, and grammatical categories processing. Time permitting, the end of the talk will cover the temporal dynamics of semantic dimensions recovery and the role played by the task.
Geometry of concept learning
Understanding Human ability to learn novel concepts from just a few sensory experiences is a fundamental problem in cognitive neuroscience. I will describe a recent work with Ben Sorcher and Surya Ganguli (PNAS, October 2022) in which we propose a simple, biologically plausible, and mathematically tractable neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas. Discrimination between novel concepts is performed by downstream neurons implementing ‘prototype’ decision rule, in which a test example is classified according to the nearest prototype constructed from the few training examples. We show that prototype few-shot learning achieves high few-shot learning accuracy on natural visual concepts using both macaque inferotemporal cortex representations and deep neural network (DNN) models of these representations. We develop a mathematical theory that links few-shot learning to the geometric properties of the neural concept manifolds and demonstrate its agreement with our numerical simulations across different DNNs as well as different layers. Intriguingly, we observe striking mismatches between the geometry of manifolds in intermediate stages of the primate visual pathway and in trained DNNs. Finally, we show that linguistic descriptors of visual concepts can be used to discriminate images belonging to novel concepts, without any prior visual experience of these concepts (a task known as ‘zero-shot’ learning), indicated a remarkable alignment of manifold representations of concepts in visual and language modalities. I will discuss ongoing effort to extend this work to other high level cognitive tasks.
Towards multi-system network models for cognitive neuroscience
Artificial neural networks can be useful for studying brain functions. In cognitive neuroscience, recurrent neural networks are often used to model cognitive functions. I will first offer my opinion on what is missing in the classical use of recurrent neural networks. Then I will discuss two lines of ongoing efforts in our group to move beyond the classical recurrent neural networks by studying multi-system neural networks (the talk will focus on two-system networks). These are networks that combine modules for several neural systems, such as vision, audition, prefrontal, hippocampal systems. I will showcase how multi-system networks can potentially be constrained by experimental data in fundamental ways and at scale.
A Framework for a Conscious AI: Viewing Consciousness through a Theoretical Computer Science Lens
We examine consciousness from the perspective of theoretical computer science (TCS), a branch of mathematics concerned with understanding the underlying principles of computation and complexity, including the implications and surprising consequences of resource limitations. We propose a formal TCS model, the Conscious Turing Machine (CTM). The CTM is influenced by Alan Turing's simple yet powerful model of computation, the Turing machine (TM), and by the global workspace theory (GWT) of consciousness originated by cognitive neuroscientist Bernard Baars and further developed by him, Stanislas Dehaene, Jean-Pierre Changeux, George Mashour, and others. However, the CTM is not a standard Turing Machine. It’s not the input-output map that gives the CTM its feeling of consciousness, but what’s under the hood. Nor is the CTM a standard GW model. In addition to its architecture, what gives the CTM its feeling of consciousness is its predictive dynamics (cycles of prediction, feedback and learning), its internal multi-modal language Brainish, and certain special Long Term Memory (LTM) processors, including its Inner Speech and Model of the World processors. Phenomena generally associated with consciousness, such as blindsight, inattentional blindness, change blindness, dream creation, and free will, are considered. Explanations derived from the model draw confirmation from consistencies at a high level, well above the level of neurons, with the cognitive neuroscience literature. Reference. L. Blum and M. Blum, "A theory of consciousness from a theoretical computer science perspective: Insights from the Conscious Turing Machine," PNAS, vol. 119, no. 21, 24 May 2022. https://www.pnas.org/doi/epdf/10.1073/pnas.2115934119
Adaptive neural network classifier for decoding finger movements
While non-invasive Brain-to-Computer interface can accurately classify the lateralization of hand moments, the distinction of fingers activation in the same hand is limited by their local and overlapping representation in the motor cortex. In particular, the low signal-to-noise ratio restrains the opportunity to identify meaningful patterns in a supervised fashion. Here we combined Magnetoencephalography (MEG) recordings with advanced decoding strategy to classify finger movements at single trial level. We recorded eight subjects performing a serial reaction time task, where they pressed four buttons with left and right index and middle fingers. We evaluated the classification performance of hand and finger movements with increasingly complex approaches: supervised common spatial patterns and logistic regression (CSP + LR) and unsupervised linear finite convolutional neural network (LF-CNN). The right vs left fingers classification performance was accurate above 90% for all methods. However, the classification of the single finger provided the following accuracy: CSP+SVM : – 68 ± 7%, LF-CNN : 71 ± 10%. CNN methods allowed the inspection of spatial and spectral patterns, which reflected activity in the motor cortex in the theta and alpha ranges. Thus, we have shown that the use of CNN in decoding MEG single trials with low signal to noise ratio is a promising approach that, in turn, could be extended to a manifold of problems in clinical and cognitive neuroscience.
Clinical neuroscience and the heart-brain axis (BACN Mid-career Prize Lecture 2021)
Cognitive and emotional processes are shaped by the dynamic integration of brain and body. A major channel of interoceptive information comes from the heart, where phasic signals are conveyed to the brain to indicate how fast and strong the heart is beating. This talk will discuss how interoceptive processes operate across conscious and unconscious levels to influence emotion and memory. The interoceptive channel is disrupted in distinct ways in individuals with autism and anxiety. Selective interoceptive disturbance is related to symptomatology including dissociation and the transdiagnostic expression of anxiety. Interoceptive training can reduce anxiety, with enhanced interoceptive precision associated with greater insula connectivity following targeted interoceptive feedback. The discrete cardiac effects on emotion and cognition have broad relevance to clinical neuroscience, with implications for peripheral treatment targets and behavioural interventions.
Efficient reuse of computations in planning
Solving complex planning problems efficiently and flexibly requires reusing expensive previous computations. The brain can do this, but how? I present a new theory that addresses this question and connects planning to hitherto distinct areas within cognitive neuroscience, such as entorhinal representation of cognitive maps and cognitive control.
Brain dynamics and flexible behaviors
Executive control processes and flexible behaviors rely on the integrity of, and dynamic interactions between, large-scale functional brain networks. The right insular cortex is a critical component of a salience/midcingulo-insular network that is thought to mediate interactions between brain networks involved in externally oriented (central executive/lateral frontoparietal network) and internally oriented (default mode/medial frontoparietal network) processes. How these brain systems reconfigure with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. I will describe studies examining how brain network dynamics support flexible behaviors in typical and atypical development, presenting evidence suggesting a unique role for the dorsal anterior insular from studies of meta-analytic connectivity modeling, dynamic functional connectivity, and structural connectivity. These findings from adults, typically developing children, and children with autism suggest that structural and functional maturation of insular pathways is a critical component of the process by which human brain networks mature to support complex, flexible cognitive processes throughout the lifespan.
Multimodal framework and fusion of EEG, graph theory and sentiment analysis for the prediction and interpretation of consumer decision
The application of neuroimaging methods to marketing has recently gained lots of attention. In analyzing consumer behaviors, the inclusion of neuroimaging tools and methods is improving our understanding of consumer’s preferences. Human emotions play a significant role in decision making and critical thinking. Emotion classification using EEG data and machine learning techniques has been on the rise in the recent past. We evaluate different feature extraction techniques, feature selection techniques and propose the optimal set of features and electrodes for emotion recognition.Affective neuroscience research can help in detecting emotions when a consumer responds to an advertisement. Successful emotional elicitation is a verification of the effectiveness of an advertisement. EEG provides a cost effective alternative to measure advertisement effectiveness while eliminating several drawbacks of the existing market research tools which depend on self-reporting. We used Graph theoretical principles to differentiate brain connectivity graphs when a consumer likes a logo versus a consumer disliking a logo. The fusion of EEG and sentiment analysis can be a real game changer and this combination has the power and potential to provide innovative tools for market research.
Body Representation in Virtual Reality
How the brain represents the body is a fundamental question in cognitive neuroscience. Experimental studies are difficult because ‘the body is always there’ (William James). In recent years immersive virtual reality techniques have been introduced that deliver apparent changes to the body extending earlier techniques such as the rubber hand illusion, or substituting the whole body by a virtual one visually collocated with the real body, and seen from a normal first person perspective. This talk will introduce these techniques, and concentrate on how changing the body can change the mind and behaviour, especially in the context of combatting aggression based on gender or race.
Refuting the unfolding-argument on the irrelevance of causal structure to consciousness
I will build from Niccolo's discussion of the Blockhead argument to argue that having an FeedForward Network (FN) responding like an recurrent network (RN) in a consciousness experiment is not enough to convince us the two are the same with regards to the posession of mental states and conscious experience. I will then argue that a robust functional equivalence between FFN and RN is akso not supported by the mathematical work on the Universal Approximator theorem, and is also unlikely to hold, as a conjecture, given data in cognitive neuroscience; I will argue that an equivalence of RN and FFN may only apply to static functions between input/output layers and not to the temporal patterns or to the network's reactions to structural perturbations. Finally, I review data indicating that consciousness has functional characteristics, such as a flexible control of behavior, and that cognitive/brain dynamics reveal interacting top-down and bottom-up processes, which are necessary for the mediation of such control processes.
Free will over time: Distinguishing top-down and now-then control
Self-control is a central aspect of free will. Because self-control is often described in terms of resisting temptations, research on the cognitive neuroscience of free will often focuses on mechanisms of top-down regulation. We argue that this obscures a crucial temporal dimension of free will: now-then regulation. We distinguish now-then regulation from top-down regulation, and situate now-then regulation within a broader account of temporally extended agency. In highlighting this temporal dimension of control, we aim to provide a more nuanced account of how motivation informs action over time, different kinds of regulatory processes underlying the planning and execution of action, and the temporal components of reasons-responsiveness.
What neural oscillations can(not) do for syntactic structure building
The question of how syntactic structure can be built at the neural level has come to the forefront of cognitive neuroscience in the last decade. Neural oscillations have been widely recognised as playing an important role in building syntactic representations. In this talk I will review existing oscillatory approaches to syntactic structure building and assess their functionality in light of basic properties of a hierarchical syntactic structure, such as varied length of syntactic phrases, nesting of constituents, overlap in length between different levels of the syntactic hierarchy and others. I will also briefly discuss key requirements on neural structure building mechanisms from the perspective of a real-time parser.
Metabolic and functional connectivity relate to distinct aspects of cognition
A major challenge of cognitive neuroscience is to understand how the brain as a network gives rise to our cognition. Simultaneous [18F]-fluorodeoxyglucose positron emission tomography functional magnetic resonance imaging (FDG-PET/fMRI) provides the opportunity to investigate brain connectivity not only via spatially distant, synchronous cerebrovascular hemodynamic responses (functional connectivity), but also glucose metabolism (metabolic connectivity). However, how these two modalities of brain connectivity differ in their relation to cognition is unknown. In this webinar, Dr Katharina Voigt will discuss recent findings demonstrating the advantage of simultaneous FDG-PET/fMRI in providing a more complete picture of the neural mechanisms underlying cognition, that calls for a combination of both modalities in future cognitive neuroscience. Dr Katharina Voigt is a Research Fellow within the Turner Institute for Brain and Mental Health, Monash University. Her research interests include systems neuroscience, simultaneous PET-MRI, and decision-making.
Immersive Neuroscience: Bringing Cognitive Neuroscience Closer to the Real World
Understanding the role of prediction in sensory encoding
At any given moment the brain receives more sensory information than it can use to guide adaptive behaviour, creating the need for mechanisms that promote efficient processing of incoming sensory signals. One way in which the brain might reduce its sensory processing load is to encode successive presentations of the same stimulus in a more efficient form, a process known as neural adaptation. Conversely, when a stimulus violates an expected pattern, it should evoke an enhanced neural response. Such a scheme for sensory encoding has been formalised in predictive coding theories, which propose that recent experience establishes expectations in the brain that generate prediction errors when violated. In this webinar, Professor Jason Mattingley will discuss whether the encoding of elementary visual features is modulated when otherwise identical stimuli are expected or unexpected based upon the history of stimulus presentation. In humans, EEG was employed to measure neural activity evoked by gratings of different orientations, and multivariate forward modelling was used to determine how orientation selectivity is affected for expected versus unexpected stimuli. In mice, two-photon calcium imaging was used to quantify orientation tuning of individual neurons in the primary visual cortex to expected and unexpected gratings. Results revealed enhanced orientation tuning to unexpected visual stimuli, both at the level of whole-brain responses and for individual visual cortex neurons. Professor Mattingley will discuss the implications of these findings for predictive coding theories of sensory encoding. Professor Jason Mattingley is a Laureate Fellow and Foundation Chair in Cognitive Neuroscience at The University of Queensland. His research is directed toward understanding the brain processes that support perception, selective attention and decision-making, in health and disease.
Meta-analytic evidence of differential prefrontal and early sensory cortex activity during non-social sensory perception in autism
To date, neuroimaging research has had a limited focus on non-social features of autism. As a result, neurobiological explanations for atypical sensory perception in autism are lacking. To address this, we quantitively condensed findings from the non-social autism fMRI literature in line with the current best practices for neuroimaging meta-analyses. Using activation likelihood estimation (ALE), we conducted a series of robust meta-analyses across 83 experiments from 52 fMRI studies investigating differences between autistic (n = 891) and typical (n = 967) participants. We found that typical controls, compared to autistic people, show greater activity in the prefrontal cortex (BA9, BA10) during perception tasks. More refined analyses revealed that, when compared to typical controls, autistic people show greater recruitment of the extrastriate V2 cortex (BA18) during visual processing. Taken together, these findings contribute to our understanding of current theories of autistic perception, and highlight some of the challenges of cognitive neuroscience research in autism.
Towards a Translational Neuroscience of Consciousness
The cognitive neuroscience of conscious perception has seen considerable growth over the past few decades. Confirming an influential hypothesis driven by earlier studies of neuropsychological patients, we have found that the lateral and polar prefrontal cortices play important causal roles in the generation of subjective experiences. However, this basic empirical finding has been hotly contested by researchers with different theoretical commitments, and the differences are at times difficult to resolve. To address the controversies, I suggest one alternative venue may be to look for clinical applications derived from current theories. I outline an example in which we used closed-loop fMRI combined with machine learning to nonconsciously manipulate the physiological responses to threatening stimuli, such as spiders or snakes. A clinical trial involving patients with phobia is currently taking place. I also outline how this theoretical framework may be extended to other diseases. Ultimately, a truly meaningful understanding of the fundamental nature of our mental existence should lead to useful insights for our colleagues on the clinical frontlines. If we use this as a yardstick, whoever loses the esoteric theoretical debates, both science and the patients will always win.
Why birds are smart
The Cognitive Map Theory – 40 Years On
John O’Keefe is a Professor of Cognitive Neuroscience at UCL and he received the Nobel Prize in Physiology or Medicine in 2014 for his “discoveries of cells that constitute a positioning system in the brain". His revolutionary research on hippocampal place cells provided deeper insight into the neural processes underlying the sense of space. His lab in Sainsbury Wellcome Centre applies a wide range of methods to facilitate our understanding of the role of the entorhinal cortex and hippocampus in spatial memory and the neural mechanisms underlying short-term memories in the amygdala.
Can subjective experience be quantified? Critically examining computational cognitive neuroscience approaches
Computational and cognitive neuroscience techniques have made great strides towards describing the neural computations underlying perceptual inference and decision-making under uncertainty. These tools tell us how and why perceptual illusions occur, which brain areas may represent noisy information in a probabilistic manner, and so on. However, an understanding of the subjective, qualitative aspects of perception remains elusive: qualia, or the personal, intrinsic properties of phenomenal awareness, have remained out of reach of these computational analytic insights. Here, I propose that metacognitive computations, and the subjective feelings that go along with them, give us a solid starting point for understanding subjective experience in general. Specifically, perceptual metacognition possesses ontological and practical properties that provide a powerful and unique opportunity for studying the studying the neural and computational correlates of subjective experience using established tools of computational and cognitive neuroscience. By capitalizing on decades of developments in formal computational model comparisons as applied to the specific properties of perceptual metacognition, we are now in a privileged position to reveal new and exciting insights about how the brain constructs our subjective conscious experiences.
Human voluntary action: from thought to movement
The ability to decide and act autonomously is a distinctive feature of human cognition. From a motor neurophysiology viewpoint, these 'voluntary' actions can be distinguished by the lack of an obvious triggering sensory stimulus: the action is considered to be a product of thought, rather than a reflex result of a specific input. A reverse engineering approach shows that such actions are caused by neurons of the primary cortex, which in turn depend on medial frontal areas, and finally a combination of prefrontal cortical connections and subcortical drive from basal ganglia loops. One traditional marker of voluntary action is the EEG readiness potential (RP), recorded over the frontal cortex prior to voluntary actions. However, the interpretation of this signal remains controversial, and very few experimental studies have attempted to link the RP to the thought process that lead to voluntary action. In this talk, I will report new studies that show learning an internal model about the optimum delay at which to act influences the amplitude of the RP. More generally, a scientific understanding of voluntariness and autonomy will require new neurocognitive paradigms connecting thought and action.
The consequences and constraints of functional organization on behavior
In many ways, cognitive neuroscience is the attempt to use physiological observation to clarify the mechanisms that shape behavior. Over the past 25 years, fMRI has provided a system-wide and yet somewhat spatially precise view of the response in human cortex evoked by a wide variety of stimuli and task contexts. The current talk focuses on the other direction of inference; the implications of this observed functional organization for behavior. To begin, we must interrogate the methodological and empirical frameworks underlying our derivation of this organization, partially by exploring its relationship to and predictability from gross neuroanatomy. Next, across a series of studies, the implications of two properties of functional organization for behavior will be explored: 1) the co-localization of visual working memory and perceptual processing and 2) implicit learning in the context of distributed responses. In sum, these results highlight the limitations of our current approach and hint at a new general mechanism for explaining observed behavior in context with the neural substrate.
Mini-symposium on the Neuroscience of Cognitive Development
Speakers will highlight research on the developmental processes underlying cognitive control and the effects of environmental risk factors on neural pathways in human cognitive development. Gaia Scerif, from University of Oxford, will be giving a talk on Using developmental cognitive neuroscience tools to investigate mechanisms of atypical cognitive control, followed by Kirsten Donald, from University of Cape Town, who will give a talk titled Neuroimaging the very young high risk brain: lessons from a south African birth cohort.
Cognitive Neuroscience coverage
37 items