Comparison
comparison
Latest
Cognitive maps as expectations learned across episodes – a model of the two dentate gyrus blades
How can the hippocampal system transition from episodic one-shot learning to a multi-shot learning regime and what is the utility of the resultant neural representations? This talk will explore the role of the dentate gyrus (DG) anatomy in this context. The canonical DG model suggests it performs pattern separation. More recent experimental results challenge this standard model, suggesting DG function is more complex and also supports the precise binding of objects and events to space and the integration of information across episodes. Very recent studies attribute pattern separation and pattern integration to anatomically distinct parts of the DG (the suprapyramidal blade vs the infrapyramidal blade). We propose a computational model that investigates this distinction. In the model the two processing streams (potentially localized in separate blades) contribute to the storage of distinct episodic memories, and the integration of information across episodes, respectively. The latter forms generalized expectations across episodes, eventually forming a cognitive map. We train the model with two data sets, MNIST and plausible entorhinal cortex inputs. The comparison between the two streams allows for the calculation of a prediction error, which can drive the storage of poorly predicted memories and the forgetting of well-predicted memories. We suggest that differential processing across the DG aids in the iterative construction of spatial cognitive maps to serve the generation of location-dependent expectations, while at the same time preserving episodic memory traces of idiosyncratic events.
Vision for perception versus vision for action: dissociable contributions of visual sensory drives from primary visual cortex and superior colliculus neurons to orienting behaviors
The primary visual cortex (V1) directly projects to the superior colliculus (SC) and is believed to provide sensory drive for eye movements. Consistent with this, a majority of saccade-related SC neurons also exhibit short-latency, stimulus-driven visual responses, which are additionally feature-tuned. However, direct neurophysiological comparisons of the visual response properties of the two anatomically-connected brain areas are surprisingly lacking, especially with respect to active looking behaviors. I will describe a series of experiments characterizing visual response properties in primate V1 and SC neurons, exploring feature dimensions like visual field location, spatial frequency, orientation, contrast, and luminance polarity. The results suggest a substantial, qualitative reformatting of SC visual responses when compared to V1. For example, SC visual response latencies are actively delayed, independent of individual neuron tuning preferences, as a function of increasing spatial frequency, and this phenomenon is directly correlated with saccadic reaction times. Such “coarse-to-fine” rank ordering of SC visual response latencies as a function of spatial frequency is much weaker in V1, suggesting a dissociation of V1 responses from saccade timing. Consistent with this, when we next explored trial-by-trial correlations of individual neurons’ visual response strengths and visual response latencies with saccadic reaction times, we found that most SC neurons exhibited, on a trial-by-trial basis, stronger and earlier visual responses for faster saccadic reaction times. Moreover, these correlations were substantially higher for visual-motor neurons in the intermediate and deep layers than for more superficial visual-only neurons. No such correlations existed systematically in V1. Thus, visual responses in SC and V1 serve fundamentally different roles in active vision: V1 jumpstarts sensing and image analysis, but SC jumpstarts moving. I will finish by demonstrating, using V1 reversible inactivation, that, despite reformatting of signals from V1 to the brainstem, V1 is still a necessary gateway for visually-driven oculomotor responses to occur, even for the most reflexive of eye movement phenomena. This is a fundamental difference from rodent studies demonstrating clear V1-independent processing in afferent visual pathways bypassing the geniculostriate one, and it demonstrates the importance of multi-species comparisons in the study of oculomotor control.
Use case determines the validity of neural systems comparisons
Deep learning provides new data-driven tools to relate neural activity to perception and cognition, aiding scientists in developing theories of neural computation that increasingly resemble biological systems both at the level of behavior and of neural activity. But what in a deep neural network should correspond to what in a biological system? This question is addressed implicitly in the use of comparison measures that relate specific neural or behavioral dimensions via a particular functional form. However, distinct comparison methodologies can give conflicting results in recovering even a known ground-truth model in an idealized setting, leaving open the question of what to conclude from the outcome of a systems comparison using any given methodology. Here, we develop a framework to make explicit and quantitative the effect of both hypothesis-driven aspects—such as details of the architecture of a deep neural network—as well as methodological choices in a systems comparison setting. We demonstrate via the learning dynamics of deep neural networks that, while the role of the comparison methodology is often de-emphasized relative to hypothesis-driven aspects, this choice can impact and even invert the conclusions to be drawn from a comparison between neural systems. We provide evidence that the right way to adjudicate a comparison depends on the use case—the scientific hypothesis under investigation—which could range from identifying single-neuron or circuit-level correspondences to capturing generalizability to new stimulus properties
Visual-vestibular cue comparison for perception of environmental stationarity
Note the later time!
How fly neurons compute the direction of visual motion
Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits, involving a comparison of the signals from neighboring photoreceptors over time. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Much progress has been made in recent years in the fruit fly Drosophila melanogaster by genetically targeting individual neuron types to block, activate or record from them. Our results obtained this way demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.
Behavioural Basis of Subjective Time Distortions
Precisely estimating event timing is essential for survival, yet temporal distortions are ubiquitous in our daily sensory experience. Here, we tested whether the relative position, duration, and distance in time of two sequentially-organized events—standard S, with constant duration, and comparison C, with duration varying trial-by-trial—are causal factors in generating temporal distortions. We found that temporal distortions emerge when the first event is shorter than the second event. Importantly, a significant interaction suggests that a longer inter-stimulus interval (ISI) helps to counteract such serial distortion effect only when the constant S is in the first position, but not if the unpredictable C is in the first position. These results imply the existence of a perceptual bias in perceiving ordered event durations, mechanistically contributing to distortion in time perception. Our results clarify the mechanisms generating time distortions by identifying a hitherto unknown duration-dependent encoding inefficiency in human serial temporal perception, something akin to a strong prior that can be overridden for highly predictable sensory events but unfolds for unpredictable ones.
Explaining an asymmetry in similarity and difference judgments
Explicit similarity judgments tend to emphasize relational information more than do difference judgments. In this talk, I propose and test the hypothesis that this asymmetry arises because human reasoners represent the relation different as the negation of the relation same (i.e., as not-same). This proposal implies that processing difference is more cognitively demanding than processing similarity. Both for verbal comparisons between word pairs, and for visual comparisons between sets of geometric shapes, participants completed a triad task in which they selected which of two options was either more similar to or more different from a standard. On unambiguous trials, one option was unambiguously more similar to the standard, either by virtue of featural similarity or by virtue of relational similarity. On ambiguous trials, one option was more featurally similar (but less relationally similar) to the standard, whereas the other was more relationally similar (but less featurally similar). Given the higher cognitive complexity of assessing relational similarity, we predicted that detecting relational difference would be particularly demanding. We found that participants (1) had more difficulty accurately detecting relational difference than they did relational similarity on unambiguous trials, and (2) tended to emphasize relational information more when judging similarity than when judging difference on ambiguous trials. The latter finding was captured by a computational model of comparison that weights relational information more heavily for similarity than for difference judgments. These results provide convergent evidence for a representational asymmetry between the relations same and different.
Verb metaphors are processed as analogies
Metaphor is a pervasive phenomenon in language and cognition. To date, the vast majority of psycholinguistic research on metaphor has focused on noun-noun metaphors of the form An X is a Y (e.g., My job is a jail). Yet there is evidence that verb metaphor (e.g., I sailed through my exams) is more common. Despite this, comparatively little work has examined how verb metaphors are processed. In this talk, I will propose a novel account for verb metaphor comprehension: verb metaphors are understood in the same way that analogies are—as comparisons processed via structure-mapping. I will discuss the predictions that arise from applying the analogical framework to verb metaphor and present a series of experiments showing that verb metaphoric extension is consistent with those predictions.
Applying Structural Alignment theory to Early Verb Learning
Learning verbs is difficult and critical to learning one's native language. Children appear to benefit from seeing multiple events and comparing them to each other, and structural alignment theory provides a good theoretical framework to guide research into how preschool children may be comparing events as they learn new verbs. The talk will include 6 studies of early verb learning that make use of eye-tracking procedures as well as other behavioral (pointing) procedures, and that test key predictions from SA theory including the prediction that seeing similar examples before more varied examples helps observers learn how to compare (progressive alignment) and the prediction that when events have very low alignability with other events, that is one cue that the events should be ignored. Whether or how statistical learning may also be at work will be considered.
Analogies between exemplars of schema-governed categories
Dominant theories of analogical thinking postulate that making an analogy consists in discovering that two superficially different situations share isomorphic systems of similar relations. According to this perspective, the comparison between the two situations may eventually lead to the construction of a schema, which retains the structural aspects they share and deletes their specific contents. We have developed a new approach to analogical thinking, whose purpose is to explain a particular type of analogies: those in which the analogs are exemplars of a schema-governed category (e.g., two instances of robbery). As compared to standard analogies, these comparisons are noteworthy in that a well-established schema (the schema-governed category) mediates each one of the subprocesses involved in analogical thinking. We argue that the category assignment approach is able to provide a better account of how the analogical subprocesses of retrieval, mapping, re-representation, evaluation and inference generation are carried out during the processing of this specific kind of analogies. The arguments presented are accompanied by brief descriptions of some of the studies that provided support for this approach.
Navigating Increasing Levels of Relational Complexity: Perceptual, Analogical, and System Mappings
Relational thinking involves comparing abstract relationships between mental representations that vary in complexity; however, this complexity is rarely made explicit during everyday comparisons. This study explored how people naturally navigate relational complexity and interference using a novel relational match-to-sample (RMTS) task with both minimal and relationally directed instruction to observe changes in performance across three levels of relational complexity: perceptual, analogy, and system mappings. Individual working memory and relational abilities were examined to understand RMTS performance and susceptibility to interfering relational structures. Trials were presented without practice across four blocks and participants received feedback after each attempt to guide learning. Experiment 1 instructed participants to select the target that best matched the sample, while Experiment 2 additionally directed participants’ attention to same and different relations. Participants in Experiment 2 demonstrated improved performance when solving analogical mappings, suggesting that directing attention to relational characteristics affected behavior. Higher performing participants—those above chance performance on the final block of system mappings—solved more analogical RMTS problems and had greater visuospatial working memory, abstraction, verbal analogy, and scene analogy scores compared to lower performers. Lower performers were less dynamic in their performance across blocks and demonstrated negative relationships between analogy and system mapping accuracy, suggesting increased interference between these relational structures. Participant performance on RMTS problems did not change monotonically with relational complexity, suggesting that increases in relational complexity places nonlinear demands on working memory. We argue that competing relational information causes additional interference, especially in individuals with lower executive function abilities.
Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer
The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.
Seeing the world through moving photoreceptors - binocular photomechanical microsaccades give fruit fly hyperacute 3D-vision
To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors.
Analogical retrieval across disparate task domains
Previous experiments have shown that a comparison of two written narratives highlights their shared relational structure, which in turn facilitates the retrieval of analogous narratives from the past (e.g., Gentner, Loewenstein, Thompson, & Forbus, 2009). However, analogical retrieval occurs across domains that appear more conceptually distant than merely different narratives, and the deepest analogies use matches in higher-order relational structure. The present study investigated whether comparison can facilitate analogical retrieval of higher-order relations across written narratives and abstract symbolic problems. Participants read stories which became retrieval targets after a delay, cued by either analogous stories or letter-strings. In Experiment 1 we replicated Gentner et al. who used narrative retrieval cues, and also found preliminary evidence for retrieval between narrative and symbolic domains. In Experiment 2 we found clear evidence that a comparison of analogous letter-string problems facilitated the retrieval of source stories with analogous higher-order relations. Experiment 3 replicated the retrieval results of Experiment 2 but with a longer delay between encoding and recall, and a greater number of distractor source stories. These experiments offer support for the schema induction account of analogical retrieval (Gentner et al., 2009) and show that the schemas abstracted from comparison of narratives can be transferred to non-semantic symbolic domains.
Heterogeneity and non-random connectivity in reservoir computing
Reservoir computing is a promising framework to study cortical computation, as it is based on continuous, online processing and the requirements and operating principles are compatible with cortical circuit dynamics. However, the framework has issues that limit its scope as a generic model for cortical processing. The most obvious of these is that, in traditional models, learning is restricted to the output projections and takes place in a fully supervised manner. If such an output layer is interpreted at face value as downstream computation, this is biologically questionable. If it is interpreted merely as a demonstration that the network can accurately represent the information, this immediately raises the question of what would be biologically plausible mechanisms for transmitting the information represented by a reservoir and incorporating it in downstream computations. Another major issue is that we have as yet only modest insight into how the structural and dynamical features of a network influence its computational capacity, which is necessary not only for gaining an understanding of those features in biological brains, but also for exploiting reservoir computing as a neuromorphic application. In this talk, I will first demonstrate a method for quantifying the representational capacity of reservoirs without training them on tasks. Based on this technique, which allows systematic comparison of systems, I then present our recent work towards understanding the roles of heterogeneity and connectivity patterns in enhancing both the computational properties of a network and its ability to reliably transmit to downstream networks. Finally, I will give a brief taster of our current efforts to apply the reservoir computing framework to magnetic systems as an approach to neuromorphic computing.
How do protein-RNA condensates form and contribute to disease?
In recent years, it has become clear that intrinsically disordered regions (IDRs) of RBPs, and the structure of RNAs, often contribute to the condensation of RNPs. To understand the transcriptomic features of such RNP condensates, we’ve used an improved individual nucleotide resolution CLIP protocol (iiCLIP), which produces highly sensitive and specific data, and thus enables quantitative comparisons of interactions across conditions (Lee et al., 2021). This showed how the IDR-dependent condensation properties of TDP-43 specify its RNA binding and regulatory repertoire (Hallegger et al., 2021). Moreover, we developed software for discovery and visualisation of RNA binding motifs that uncovered common binding patterns of RBPs on long multivalent RNA regions that are composed of dispersed motif clusters (Kuret et al, 2021). Finally, we used hybrid iCLIP (hiCLIP) to characterise the RNA structures mediating the assembly of Staufen RNPs across mammalian brain development, which demonstrated the roles of long-range RNA duplexes in the compaction of long 3’UTRs. I will present how the combined analysis of the characteristics of IDRs in RBPs, multivalent RNA regions and RNA structures is required to understand the formation and functions of RNP condensates, and how they change in diseases.
Parametric control of flexible timing through low-dimensional neural manifolds
Biological brains possess an exceptional ability to infer relevant behavioral responses to a wide range of stimuli from only a few examples. This capacity to generalize beyond the training set has been proven particularly challenging to realize in artificial systems. How neural processes enable this capacity to extrapolate to novel stimuli is a fundamental open question. A prominent but underexplored hypothesis suggests that generalization is facilitated by a low-dimensional organization of collective neural activity, yet evidence for the underlying neural mechanisms remains wanting. Combining network modeling, theory and neural data analysis, we tested this hypothesis in the framework of flexible timing tasks, which rely on the interplay between inputs and recurrent dynamics. We first trained recurrent neural networks on a set of timing tasks while minimizing the dimensionality of neural activity by imposing low-rank constraints on the connectivity, and compared the performance and generalization capabilities with networks trained without any constraint. We then examined the trained networks, characterized the dynamical mechanisms underlying the computations, and verified their predictions in neural recordings. Our key finding is that low-dimensional dynamics strongly increases the ability to extrapolate to inputs outside of the range used in training. Critically, this capacity to generalize relies on controlling the low-dimensional dynamics by a parametric contextual input. We found that this parametric control of extrapolation was based on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds in activity space while preserving their geometry. Comparisons with neural recordings in the dorsomedial frontal cortex of macaque monkeys performing flexible timing tasks confirmed the geometric and dynamical signatures of this mechanism. Altogether, our results tie together a number of previous experimental findings and suggest that the low-dimensional organization of neural dynamics plays a central role in generalizable behaviors.
Spatial alignment supports visual comparisons
Visual comparisons are ubiquitous, and they can also be an important source for learning (e.g., Gentner et al., 2016; Kok et al., 2013). In science, technology, engineering, and math (STEM), key information is often conveyed through figures, graphs, and diagrams (Mayer, 1993). Comparing within and across visuals is critical for gleaning insight into the underlying concepts, structures, and processes that they represent. This talk addresses how people make visual comparisons and how visual comparisons can be best supported to improve learning. In particular, the talk will present a series of studies exploring the Spatial Alignment Principle (Matlen et al., 2020), derived from Structure-Mapping Theory (Gentner, 1983). Structure-mapping theory proposes that comparisons involve a process of finding correspondences between elements based on structured relationships. The Spatial Alignment Principle suggests that spatially arranging compared figures directly – to support correct correspondences and minimize interference from incorrect correspondences – will facilitate visual comparisons. We find that direct placement can facilitate visual comparison in educationally relevant stimuli, and that it may be especially important when figures are less familiar. We also present complementary evidence illustrating the preponderance of visual comparisons in 7th grade science textbooks.
NMC4 Short Talk: Systematic exploration of neuron type differences in standard plasticity protocols employing a novel pathway based plasticity rule
Spike Timing Dependent Plasticity (STDP) is argued to modulate synaptic strength depending on the timing of pre- and postsynaptic spikes. Physiological experiments identified a variety of temporal kernels: Hebbian, anti-Hebbian and symmetrical LTP/LTD. In this work we present a novel plasticity model, the Voltage-Dependent Pathway Model (VDP), which is able to replicate those distinct kernel types and intermediate versions with varying LTP/LTD ratios and symmetry features. In addition, unlike previous models it retains these characteristics for different neuron models, which allows for comparison of plasticity in different neuron types. The plastic updates depend on the relative strength and activation of separately modeled LTP and LTD pathways, which are modulated by glutamate release and postsynaptic voltage. We used the 15 neuron type parametrizations in the GLIF5 model presented by Teeter et al. (2018) in combination with the VDP to simulate a range of standard plasticity protocols including standard STDP experiments, frequency dependency experiments and low frequency stimulation protocols. Slight variation in kernel stability and frequency effects can be identified between the neuron types, suggesting that the neuron type may have an effect on the effective learning rule. This plasticity model builds a middle ground between biophysical and phenomenological models allowing not just for the combination with more complex and biophysical neuron models, but is also computationally efficient so can be used in network simulations. Therefore it offers the possibility to explore the functional role of the different kernel types and electrophysiological differences in heterogeneous networks in future work.
NMC4 Short Talk: Maggot brain, mirror image? A statistical analysis of bilateral symmetry in an insect brain connectome
Neuroscientists have many questions about connectomes that revolve around the ability to compare networks. For example, comparing connectomes could help explain how neural wiring is related to individual differences, genetics, disease, development, or learning. One such question is that of bilateral symmetry: are the left and right sides of a connectome the same? Here, we investigate the bilateral symmetry of a recently presented connectome of an insect brain, the Drosophila larva. We approach this question from the perspective of two-sample testing for networks. First, we show how this question of “sameness” can be framed as a variety of different statistical hypotheses, each with different assumptions. Then, we describe test procedures for each of these hypotheses. We show how these different test procedures perform on both the observed connectome as well as a suite of synthetic perturbations to the connectome. We also point out that these tests require careful attention to parameter alignment and differences in network density in order to provide biologically meaningful results. Taken together, these results provide the first statistical characterization of bilateral symmetry for an entire brain at the single-neuron level, while also giving practical recommendations for future comparisons of connectome networks.
NMC4 Keynote: Latent variable modeling of neural population dynamics - where do we go from here?
Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics with unprecedented detail. However, the sheer volume of data and its dynamical complexity are major barriers to uncovering and interpreting these dynamics. I will present machine learning frameworks that enable inference of dynamics from neuronal population spiking activity on single trials and millisecond timescales, from diverse brain areas, and without regard to behavior. I will then demonstrate extensions that allow recovery of dynamics from two-photon calcium imaging data with surprising precision. Finally, I will discuss our efforts to facilitate comparisons within our field by curating datasets and standardizing model evaluation, including a currently active modeling challenge, the 2021 Neural Latents Benchmark [neurallatents.github.io].
A transdiagnostic data-driven study of children’s behaviour and the functional connectome
Behavioural difficulties are seen as hallmarks of many neurodevelopmental conditions. Differences in functional brain organisation have been observed in these conditions, but little is known about how they are related to a child’s profile of behavioural difficulties. We investigated whether behavioural difficulties are associated with how the brain is functionally organised in an intentionally heterogeneous and transdiagnostic sample of 957 children aged 5-15. We used consensus community detection to derive data-driven profiles of behavioural difficulties and constructed functional connectomes from a subset of 238 children with resting-state functional Magnetic Resonance Imaging (fMRI) data. We identified three distinct profiles of behaviour that were characterised by principal difficulties with hot executive function, cool executive function, and learning. Global organisation of the functional connectome did not differ between the groups, but multivariate patterns of connectivity at the level of Intrinsic Connectivity Networks (ICNs), nodes, and hubs significantly predicted group membership in held-out data. Fronto-parietal connector hubs were under-connected in all groups relative to a comparison sample, and children with hot vs cool executive function difficulties were distinguished by connectivity in ICNs associated with cognitive control, emotion processing, and social cognition. This demonstrates both general and specific neurodevelopmental risk factors in the functional connectome. (https://www.medrxiv.org/content/10.1101/2021.09.15.21262637v1)
Novel word generalization in comparison designs: How do young children align stimuli when they learn object nouns and relational nouns?
It is well established that the opportunity to compare learning stimuli in a novel word learning/extension task elicits a larger number of conceptually relevant generalizations than standard no-comparison conditions. I will present results suggesting that the effectiveness of comparison depends on factors such as semantic distance, number of training items, dimension distinctiveness and interactions with age. I will address these issues in the case of familiar and unfamiliar object nouns and relational nouns. The alignment strategies followed by children during learning and at test (i.e., when learning items are compared and how children reach a solution) will be described with eye-tracking data. We will also assess the extent to which children’s performance in these tasks are associated with executive functions (inhibition and flexibility) and world knowledge. Finally, we will consider these issues in children with cognitive deficits (Intellectual deficiency, DLD)
Data spaces: category (sheaf) theory and phenomenology
In this talk, I’ll introduce the formal concept of a (pre)sheaf as data attached to a topological space. Sheaves capture the notion of patching local sources of information to form a global whole, e.g., the binding of visual features such as colour and shape. The formal theory appears to be closely related to the foundational properties asserted by the Information Integration Theory (IIT) for phenomenology. A comparison is intended to engender discussion on ways that phenomenology may benefit from a sheaf theory, or (more generally) a category theory approach.
The bounded rationality of probability distortion
In decision-making under risk (DMR) participants' choices are based on probability values systematically different from those that are objectively correct. Similar systematic distortions are found in tasks involving relative frequency judgments (JRF). These distortions limit performance in a wide variety of tasks and an evident question is, why do we systematically fail in our use of probability and relative frequency information? We propose a Bounded Log-Odds Model (BLO) of probability and relative frequency distortion based on three assumptions: (1) log-odds: probability and relative frequency are mapped to an internal log-odds scale, (2) boundedness: the range of representations of probability and relative frequency are bounded and the bounds change dynamically with task, and (3) variance compensation: the mapping compensates in part for uncertainty in probability and relative frequency values. We compared human performance in both DMR and JRF tasks to the predictions of the BLO model as well as eleven alternative models each missing one or more of the underlying BLO assumptions (factorial model comparison). The BLO model and its assumptions proved to be superior to any of the alternatives. In a separate analysis, we found that BLO accounts for individual participants’ data better than any previous model in the DMR literature. We also found that, subject to the boundedness limitation, participants’ choice of distortion approximately maximized the mutual information between objective task-relevant values and internal values, a form of bounded rationality.
The generation of cortical novelty responses through inhibitory plasticity
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
Children's relational noun generalization strategies
A common result is that comparison settings (i.e., several stimuli introduced simultaneously) favor conceptualization and generalization. However still little is known of the solving strategies used by children to compare and generalize novel words. Understanding the temporal dynamics of children’s solving strategies may help assess which processes underlie generalization. We tested children in noun and relational noun generalization tasks and collected eye tracking data. To analyze and interpret the data we followed predictions made by existing models of analogical reasoning and generalization. The data reveals clear patterns of exploration in which participants compare learning items before searching for a solution. Analyses of the beginning of trials show that early comparisons favor generalization and that errors may be caused by a lake of early comparison. Children then pursue their search in different ways according to the task. In this presentation I will present the generalization strategies revealed by eye tracking, compare the strategies from both tasks and confront them to existing models.
Themes and Variations: Circuit mechanisms of behavioral evolution
Animals exhibit extraordinary variation in their behavior, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviors in Drosophila to glean insight into how evolution shapes the nervous system to generate species-specific behaviors. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 neurons serve as a conserved node in regulating male courtship: these neurons are selectively activated by the sensory cues indicative of an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioral evolution, shedding light on the types of changes that are possible and preferable within brain circuits.
Probabilistic Analogical Mapping with Semantic Relation Networks
Hongjing Lu will present a new computational model of Probabilistic Analogical Mapping (PAM, in collaboration with Nick Ichien and Keith Holyoak) that finds systematic correspondences between inputs generated by machine learning. The model adopts a Bayesian framework for probabilistic graph matching, operating on semantic relation networks constructed from distributed representations of individual concepts (word embeddings created by Word2vec) and of relations between concepts (created by our BART model). We have used PAM to simulate a broad range of phenomena involving analogical mapping by both adults and children. Our approach demonstrates that human-like analogical mapping can emerge from comparison mechanisms applied to rich semantic representations of individual concepts and relations. More details can be found https://arxiv.org/ftp/arxiv/papers/2103/2103.16704.pdf
Contrasting neuronal circuits driving reactive and cognitive fear
The last decade in the field of neuroscience has been marked by intense debate on the meaning of the term fear. Whereas some have argued that fear (as well as other emotions) relies on cognitive capacities that are unique to humans, others view it as a negative state constructed from essential building blocks. This latter definition posits that fear states are associated with varying readouts that one could consider to be parallel processes or serial events tied to a specific hierarchy. Within this framework, innate defensive behaviors are considered to be common displays of fear states that lie under the control of hard-wired brain circuits. As a general rule, these defensive behaviors can be classified as either reactive or cognitive based on a thread imminence continuum. However, while evidence of the neuronal circuits that lead to these divergent behavioral strategies has accrued over the last decades, most literature has considered these responses in isolation. As a result, important misconceptions have arisen regarding how fear circuits are distributed in the brain and the contribution of specific nodes within these circuits to defensive behaviors. To mitigate the status quo, I will conduct a systematic comparison of brain circuits driving the expression of freezing and active avoidance behavior, which I will use as well-studied proxies of reactive and cognitive fear, respectively. In addition, I propose that by integrating associative information with interoceptive and exteroceptive signals the central nucleus of the amygdala plays a crucial role in biasing the selection of defensive behaviors.
Encoding local stimulus attributes and higher visual functions in V1 of behaving monkeys
In this lecture, I will present our recent progress on three aspects of population responses in the primary visual cortex: encoding local stimulus attributes, electrical microstimulation and higher visual function. In the first part I will focus on population encoding and reconstruction of contour shapes in V1 and the comparison between monkey and mouse visual responses. In the second part of the talk I will present the effects of microstimulation on neural population in V1 and the relation to evoked saccades. In the final part of the talk I will discuss top-down influences in V1 and their relation to higher visual functions.
Comparing Multiple Strategies to Improve Mathematics Learning and Teaching
Comparison is a powerful learning process that improves learning in many domains. For over 10 years, my colleagues and I have researched how we can use comparison to support better learning of school mathematics within classroom settings. In 5 short-term experimental, classroom-based studies, we evaluated comparison of solution methods for supporting mathematics knowledge and tested whether prior knowledge impacted effectiveness. We next developed supplemental Algebra I curriculum and professional development for teachers to integrate Comparison and Explanation of Multiple Strategies (CEMS) in their classrooms and tested the promise of the approach when implemented by teachers in two studies. Benefits and challenges emerged in these studies. I will conclude with evidence-based guidelines for effectively supporting comparison and explanation in the classroom. Overall, this program of research illustrates how cognitive science research can guide the design of effective educational materials as well as challenges that occur when bridging from cognitive science research to classroom instruction.
Direction selectivity in hearing: monaural phase sensitivity in octopus neurons
The processing of temporal sound features is fundamental to hearing, and the auditory system displays a plethora of specializations, at many levels, to enable such processing. Octopus neurons are the most extreme temporally-specialized cells in the auditory (and perhaps entire) brain, which make them intriguing but also difficult to study. Notwithstanding the scant physiological data, these neurons have been a favorite cell type of modeling studies which have proposed that octopus cells have critical roles in pitch and speech perception. We used a range of in vivo recording and labeling methods to examine the hypothesis that tonotopic ordering of cochlear afferents combines with dendritic delays to compensate for cochlear delay - which would explain the highly entrained responses of octopus cells to sound transients. Unexpectedly, the experiments revealed that these neurons have marked selectivity to the direction of fast frequency glides, which is tied in a surprising way to intrinsic membrane properties and subthreshold events. The data suggest that octopus cells have a role in temporal comparisons across frequency and may play a role in auditory scene analysis.
Synthetic Developmental Biology - Cross-species comparison and manipulation of organoids
Structure-mapping in Human Learning
Across species, humans are uniquely able to acquire deep relational systems of the kind needed for mathematics, science, and human language. Analogical comparison processes are a major contributor to this ability. Analogical comparison engages a structure-mapping process (Gentner, 1983) that fosters learning in at least three ways: first, it highlights common relational systems and thereby promotes abstraction; second, it promotes inferences from known situations to less familiar situations; and, third, it reveals potentially important differences between examples. In short, structure-mapping is a domain-general learning process by which abstract, portable knowledge can arise from experience. It is operative from early infancy on, and is critical to the rapid learning we see in human children. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning.
Cortical and subcortical grey matter micro-structure is associated with polygenic risk for schizophrenia
Background: Recent discovery of hundreds of common gene variants associated with schizophrenia has enabled polygenic risk scores (PRS) to be measured in the population. It is hypothesized that normal variation in genetic risk of schizophrenia should be associated with MRI changes in brain morphometry and tissue composition. Methods: We used the largest extant genome-wide association dataset (N = 69,369 cases and N = 236,642 healthy controls) to measure PRS for schizophrenia in a large sample of adults from the UK Biobank (Nmax = 29,878) who had multiple micro- and macro-structural MRI metrics measured at each of 180 cortical areas and seven subcortical structures. Linear mixed effect models were used to investigate associations between schizophrenia PRS and brain structure at global and regional scales, controlled for multiple comparisons. Results: Micro-structural phenotypes were more robustly associated with schizophrenia PRS than macro-structural phenotypes. Polygenic risk was significantly associated with reduced neurite density index (NDI) at global brain scale, at 149 cortical regions, and five subcortical structures. Other micro-structural parameters, e.g., fractional anisotropy, that were correlated with NDI were also significantly associated with schizophrenia PRS. Genetic effects on multiple MRI phenotypes were co-located in temporal, cingulate and prefrontal cortical areas, insula, and hippocampus. (Preprint: https://www.medrxiv.org/content/10.1101/2021.02.06.21251073v1)
Young IBRO NextInNeuro Webinar - The retinal basis of colour vision: from fish to humans
Colour vision is based on circuit-level comparison of the signals from spectral distinct types of photoreceptors. In our own eyes, the presence of three types of cones enable trichromatic colour vision. However, many phylogenetically ‘older’ vertebrates have four or more cone types, and in almost all their cases the circuits that enable tetra- or possibly even pentachromatic colour vision are not known. This includes the majority of birds, reptiles, amphibians, and bony fish. In the lab we study neuronal circuits for colour vision in non-mammalian vertebrates, with a focus on zebrafish, a tetrachromatic surface dwelling species of teleost. I will discuss how in the case of zebrafish, retinal colour computations are implemented in a fundamentally different, and probably much more efficient way compared to how they are thought to work in humans. I will then highlight how these fish circuits might be linked with those in mammals, possibly providing a new way of thinking about how circuits for colour vision are organized in vertebrates.
Modelling affective biases in rodents: behavioural and computational approaches
My research focuses, broadly speaking, on how emotions impact decision making. Specifically, I am interested in affective biases, a phenomenon known to be important in depression. Using a rodent decision-making task, combined with computational modelling I have investigated how different antidepressant and pro-depressant manipulations that are known to alter mood in humans alter judgement bias, and provided insight into the decision processes that underlie these behaviours. I will also highlight how the combination of behaviour and modelling can provide a truly translation approach, enabling comparison and interpretation of the same cognitive processes between animal and human research.
Values Encoded in Orbitofrontal Cortex Are Causally Linked to Economic Choices
Classic economists proposed that economic choices rely on the computation and comparison of subjective values. This hypothesis continues to inform economic theory and experimental research, but behavioral measures are ultimately not sufficient to prove the proposal. Consistent with the hypothesis, when agents make choices, neurons in the orbitofrontal cortex (OFC) encode the subjective value of offered and chosen goods. Moreover, neuronal activity in this area suggests the formation of a decision. However, it is unclear whether these neural processes are causally related to choices. More generally, the evidence linking choices to value signals in the brain remains correlational. In my talk, I will present recent results showing that neuronal activity in OFC are causal to economic choices.
Theory-driven probabilistic modeling of language use: a case study on quantifiers, logic and typicality
Theoretical linguistics postulates abstract structures that successfully explain key aspects of language. However, the precise relation between abstract theoretical ideas and empirical data from language use is not always apparent. Here, we propose to empirically test abstract semantic theories through the lens of probabilistic pragmatic modelling. We consider the historically important case of quantity words (e.g., `some', `all'). Data from a large-scale production study seem to suggest that quantity words are understood via prototypes. But based on statistical and empirical model comparison, we show that a probabilistic pragmatic model that embeds a strict truth-conditional notion of meaning explains the data just as well as a model that encodes prototypes into the meaning of quantity words.
Context and Comparison During Open-Ended Induction
A key component of humans' striking creativity in solving problems is our ability to construct novel descriptions to help us characterize novel categories. Bongard problems, which challenge the problem solver to come up with a rule for distinguishing visual scenes that fall into two categories, provide an elegant test of this ability. Bongard problems are challenging for both human and machine category learners because only a handful of example scenes are presented for each category, and they often require the open-ended creation of new descriptions. A new sub-type of Bongard problem called Physical Bongard Problems (PBPs) is introduced, which require solvers to perceive and predict the physical spatial dynamics implicit in the depicted scenes. The PATHS (Perceiving And Testing Hypotheses on Structures) computational model which can solve many PBPs is presented, and compared to human performance on the same problems. PATHS and humans are similarly affected by the ordering of scenes within a PBP, with spatially and temporally juxtaposed scenes promoting category learning when they are similar and belong to different categories, or dissimilar and belong to the same category. The core theoretical commitments of PATHS which we believe to also exemplify human open-ended category learning are a) the continual perception of new scene descriptions over the course of category learning; b) the context-dependent nature of that perceptual process, in which the scenes establish the context for one another; c) hypothesis construction by combining descriptions into logical expressions; and d) bi-directional interactions between perceiving new aspects of scenes and constructing hypotheses for the rule that distinguishes categories.
Motor Cortex in Theory and Practice
A central question in motor physiology has been whether motor cortex activity resembles muscle activity, and if not, why not? Over fifty years, extensive observations have failed to provide a concise answer, and the topic remains much debated. To provide a different perspective, we employed a novel behavioral paradigm that affords extensive comparison between time-evolving neural and muscle activity. Single motor-cortex neurons displayed many muscle-like properties, but the structure of population activity was not muscle-like. Unlike muscle activity, neural activity was structured to avoid ’trajectory tangling’: moments where similar activity patterns led to dissimilar future patterns. Avoidance of trajectory tangling was present across tasks and species. Network models revealed a potential reason for this consistent feature: low tangling confers noise robustness. Remarkably, we were able to predict motor cortex activity from muscle activity alone, by leveraging the hypothesis that muscle-like commands are embedded in additional structure that yields low tangling. Our results argue that motor cortex embeds descending commands in additional structure that ensure low tangling, and thus noise-robustness. The dominant structure in motor cortex may thus serve not a representational function (encoding specific variables) but a computational function: ensuring that outgoing commands can be generated reliably. Our results establish the utility of an emerging approach: understanding the structure of neural activity based on properties of population geometry that flow from normative principles such as noise robustness.
On climate change, multi-agent systems and the behaviour of networked control
Multi-agent reinforcement learning (MARL) has recently shown great promise as an approach to networked system control. Arguably, one of the most difficult and important tasks for which large scale networked system control is applicable is common-pool resource (CPR) management. Crucial CPRs include arable land, fresh water, wetlands, wildlife, fish stock, forests and the atmosphere, of which proper management is related to some of society’s greatest challenges such as food security, inequality and climate change. This talk will consist of three parts. In the first, we will briefly look at climate change and how it poses a significant threat to life on our planet. In the second, we will consider the potential of multi-agent systems for climate change mitigation and adaptation. And finally, in the third, we will discuss recent research from InstaDeep into better understanding the behaviour of networked MARL systems used for CPR management. More specifically, we will see how the tools from empirical game-theoretic analysis may be harnessed to analyse the differences in networked MARL systems. The results give new insights into the consequences associated with certain design choices and provide an additional dimension of comparison between systems beyond efficiency, robustness, scalability and mean control performance.
Evaluating different facets of category status for promoting spontaneous transfer
Existing accounts of analogical transfer highlight the importance of comparison-based schema abstraction in aiding retrieval of relevant prior knowledge from memory. In this talk, we discuss an alternative view, the category status hypothesis—which states that if knowledge of a target principle is represented as a relational category, it is easier to activate as a result of categorizing (as opposed to cue-based reminding)—and briefly review supporting evidence. We then further investigate this hypothesis by designing study tasks that promote different facets of category-level representations and assess their impact on spontaneous analogical transfer. A Baseline group compared two analogous cases; the remaining groups experienced comparison plus another task intended to impact the category status of the knowledge representation. The Intension group read an abstract statement of the principle with a supporting task of generating a new case. The Extension group read two more positive cases with the task of judging whether each exemplified the target principle. The Mapping group read a contrast case with the task of revising it into a positive example of the target principle (thereby providing practice moving in both directions between type and token, i.e., evaluating a given case relative to knowledge and using knowledge to generate a revised case). The results demonstrated that both Intension and Extension groups led to transfer improvements over Baseline (with the former demonstrating both improved accessibility of prior knowledge and ability to apply relational concepts). Implications for theories of analogical transfer are discussed.
The Structural Anchoring of Spontaneous Analogies
It is generally acknowledged that analogy is a core mechanism of human cognition, but paradoxically, analogies based on structural similarities would rarely be implemented spontaneously (e.g. without an explicit invitation to compare two representations). The scarcity of deep spontaneous analogies is at odds with the demonstration that familiar concepts from our daily-life are spontaneously used to encode the structure of our experiences. Based on this idea, we will present experimental works highlighting the predominant role of structural similarities in analogical retrieval. The educational stakes lurking behind the tendency to encode the problem’s structures through familiar concepts will also be addressed.
Can subjective experience be quantified? Critically examining computational cognitive neuroscience approaches
Computational and cognitive neuroscience techniques have made great strides towards describing the neural computations underlying perceptual inference and decision-making under uncertainty. These tools tell us how and why perceptual illusions occur, which brain areas may represent noisy information in a probabilistic manner, and so on. However, an understanding of the subjective, qualitative aspects of perception remains elusive: qualia, or the personal, intrinsic properties of phenomenal awareness, have remained out of reach of these computational analytic insights. Here, I propose that metacognitive computations, and the subjective feelings that go along with them, give us a solid starting point for understanding subjective experience in general. Specifically, perceptual metacognition possesses ontological and practical properties that provide a powerful and unique opportunity for studying the studying the neural and computational correlates of subjective experience using established tools of computational and cognitive neuroscience. By capitalizing on decades of developments in formal computational model comparisons as applied to the specific properties of perceptual metacognition, we are now in a privileged position to reveal new and exciting insights about how the brain constructs our subjective conscious experiences.
Using Developmental Trajectories to Understand Change in Children’s Analogical Reasoning
Analogical reasoning is a complex ‘high-level’ cognitive process characterised by making inferences based on analogical comparisons. As with other high-level processes, development takes place over a protracted time period and believed to result from changes in multiple ‘lower-level’ systems. In the case of analogical reasoning, changes in systems responsible for conceptual knowledge, task knowledge, inhibition, and working memory have all been causally implicated in development. Whilst there is evidence that each of these systems contributes to development, what the relative contribution of each across development is, and how they interact with each, remain largely unanswered questions. In this presentation, I will describe how cross-sectional trajectory analysis can be used as a complementary method to shed light on these questions.
Monkey Talk – what studies about nonhuman primate vocal communication reveal about the evolution of speech
The evolution of speech is considered to be one of the hardest problems in science. Studies of the communicative abilities of our closest living relatives, the nonhuman primates, aim to contribute to a better understanding of the emergence of this uniquely human capability. Following a brief introduction over the key building blocks that make up the human speech faculty, I will focus on the question of meaning in nonhuman primate vocalizations. While nonhuman primate calls may be highly context specific, thus giving rise to the notion of ‘referentiality’, comparisons across closely related species suggest that this specificity is evolved rather than learned. Yet, as in humans, the structure of calls varies with arousal and affective state, and there is some evidence for effects of sensory-motor integration in vocal production. Thus, the vocal production of nonhuman primates bears little resemblance to the symbolic and combinatorial features of human speech, while basic production mechanisms are shared. Listeners, in contrast, are able learning the meaning of new sounds. A recent study using artificial predator shows that this learning may be extremely rapid. Furthermore, listeners are able to integrate information from multiple sources to make adaptive decisions, which renders the vocal communication system as a whole relatively flexible and powerful. In conclusion, constraints at the side of vocal production, including limits in social cognition and motivation to share experiences, rather than constraints at the side of the recipient explain the differences in communicative abilities between humans and other animals.
Who can turn faster? Comparison of the head direction circuit of two species
Ants, bees and other insects have the ability to return to their nest or hive using a navigation strategy known as path integration. Similarly, fruit flies employ path integration to return to a previously visited food source. An important component of path integration is the ability of the insect to keep track of its heading relative to salient visual cues. A highly conserved brain region known as the central complex has been identified as being of key importance for the computations required for an insect to keep track of its heading. However, the similarities or differences of the underlying heading tracking circuit between species are not well understood. We sought to address this shortcoming by using reverse engineering techniques to derive the effective underlying neural circuits of two evolutionary distant species, the fruit fly and the locust. Our analysis revealed that regardless of the anatomical differences between the two species the essential circuit structure has not changed. Both effective neural circuits have the structural topology of a ring attractor with an eight-fold radial symmetry (Fig. 1). However, despite the strong similarities between the two ring attractors, there remain differences. Using computational modelling we found that two apparently small anatomical differences have significant functional effect on the ability of the two circuits to track fast rotational movements and to maintain a stable heading signal. In particular, the fruit fly circuit responds faster to abrupt heading changes of the animal while the locust circuit maintains a heading signal that is more robust to inhomogeneities in cell membrane properties and synaptic weights. We suggest that the effects of these differences are consistent with the behavioural ecology of the two species. On the one hand, the faster response of the ring attractor circuit in the fruit fly accommodates the fast body saccades that fruit flies are known to perform. On the other hand, the locust is a migratory species, so its behaviour demands maintenance of a defined heading for a long period of time. Our results highlight that even seemingly small differences in the distribution of dendritic fibres can have a significant effect on the dynamics of the effective ring attractor circuit with consequences for the behavioural capabilities of each species. These differences, emerging from morphologically distinct single neurons highlight the importance of a comparative approach to neuroscience.
Theme and variations: circuit mechanisms of behavioural evolution
Animals exhibit extraordinary variation in their behaviour, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviours in Drosophila to gain insight into how evolution shapes the nervous system to generate species-specific behaviours. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 interneurons serve as a conserved and key node in regulating male courtship: these neurons are selectively activated by the sensory cues carried by an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioural evolution, shedding light on the types of changes that are possible and preferable within brain circuits.
comparison coverage
50 items