Convergence
convergence
Latest
Modeling human brain development and disease: the role of primary cilia
Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.
Convergence of scene perception and visuospatial memory in posterior cerebral cortex
The smart image compression algorithm in the retina: a theoretical study of recoding inputs in neural circuits
Computation in neural circuits relies on a common set of motifs, including divergence of common inputs to parallel pathways, convergence of multiple inputs to a single neuron, and nonlinearities that select some signals over others. Convergence and circuit nonlinearities, considered individually, can lead to a loss of information about the inputs. Past work has detailed how to optimize nonlinearities and circuit weights to maximize information, but we show that selective nonlinearities, acting together with divergent and convergent circuit structure, can improve information transmission over a purely linear circuit despite the suboptimality of these components individually. These nonlinearities recode the inputs in a manner that preserves the variance among converged inputs. Our results suggest that neural circuits may be doing better than expected without finely tuned weights.
Central place foraging: how insects anchor spatial information
Many insect species maintain a nest around which their foraging behaviour is centered, and can use path integration to maintain an accurate estimate of their distance and direction (a vector) to their nest. Some species, such as bees and ants, can also store the vector information for multiple salient locations in the world, such as food sources, in a common coordinate system. They can also use remembered views of the terrain around salient locations or along travelled routes to guide return. Recent modelling of these abilities shows convergence on a small set of algorithms and assumptions that appear sufficient to account for a wide range of behavioural data, and which can be mapped to specific insect brain circuits. Notably, this does not include any significant topological knowledge: the insect does not need to recover the information (implicit in their vector memory) about the relationships between salient places; nor to maintain any connectedness or ordering information between view memories; nor to form any associations between views and vectors. However, there remains some experimental evidence not fully explained by these algorithms that may point towards the existence of a more complex or integrated mental map in insects.
The functional architecture of the human entorhinal-hippocampal circuitry
Cognitive functions like episodic memory require the formation of cohesive representations. Critical for that process is the entorhinal-hippocampal circuitry’s interaction with cortical information streams and the circuitry’s inner communication. With ultra-high field functional imaging we investigated the functional architecture of the human entorhinal-hippocampal circuitry. We identified an organization that is consistent with convergence of information in anterior and lateral entorhinal subregions and the subiculum/CA1 border while keeping a second route specific for scene processing in a posterior-medial entorhinal subregion and the distal subiculum. Our findings agree with information flow along information processing routes which functionally split the entorhinal-hippocampal circuitry along its transversal axis. My talk will demonstrate how ultra-high field imaging in humans can bridge the gap between anatomical and electrophysiological findings in rodents and our understanding of human cognition. Moreover, I will point out the implications that basic research on functional architecture has for cognitive and clinical research perspectives.
Becoming what you smell: adaptive sensing in the olfactory system
I will argue that the circuit architecture of the early olfactory system provides an adaptive, efficient mechanism for compressing the vast space of odor mixtures into the responses of a small number of sensors. In this view, the olfactory sensory repertoire employs a disordered code to compress a high dimensional olfactory space into a low dimensional receptor response space while preserving distance relations between odors. The resulting representation is dynamically adapted to efficiently encode the changing environment of volatile molecules. I will show that this adaptive combinatorial code can be efficiently decoded by systematically eliminating candidate odorants that bind to silent receptors. The resulting algorithm for 'estimation by elimination' can be implemented by a neural network that is remarkably similar to the early olfactory pathway in the brain. Finally, I will discuss how diffuse feedback from the central brain to the bulb, followed by unstructured projections back to the cortex, can produce the convergence and divergence of the cortical representation of odors presented in shared or different contexts. Our theory predicts a relation between the diversity of olfactory receptors and the sparsity of their responses that matches animals from flies to humans. It also predicts specific deficits in olfactory behavior that should result from optogenetic manipulation of the olfactory bulb and cortex, and in some disease states.
Feature selectivity can explain mismatch signals in mouse visual cortex
Sensory experience often depends on one’s own actions, including self-motion. Theories of predictive coding postulate that actions are regulated by calculating prediction error, which is the difference between sensory experience and expectation based on self-generated actions. Signals consistent with prediction error have been reported in mouse visual cortex (V1) when visual flow coupled to running was unexpectedly stopped. Here, we show such signals can be elicited by visual stimuli uncoupled to animal’s running. We recorded V1 neurons while presenting drifting gratings that unexpectedly stopped. We found strong responses to visual perturbations, which were enhanced during running. Perturbation responses were strongest in the preferred orientation of individual neurons and perturbation responsive neurons were more likely to prefer slow visual speeds. Our results indicate that prediction error signals can be explained by the convergence of known motor and sensory signals, providing a purely sensory and motor explanation for purported mismatch signals.
Swarms for people
As tiny robots become individually more sophisticated, and larger robots easier to mass produce, a breakdown of conventional disciplinary silos is enabling swarm engineering to be adopted across scales and applications, from nanomedicine to treat cancer, to cm-sized robots for large-scale environmental monitoring or intralogistics. This convergence of capabilities is facilitating the transfer of lessons learned from one scale to the other. Cm-sized robots that work in the 1000s may operate in a way similar to reaction-diffusion systems at the nanoscale, while sophisticated microrobots may have individual capabilities that allow them to achieve swarm behaviour reminiscent of larger robots with memory, computation, and communication. Although the physics of these systems are fundamentally different, much of their emergent swarm behaviours can be abstracted to their ability to move and react to their local environment. This presents an opportunity to build a unified framework for the engineering of swarms across scales that makes use of machine learning to automatically discover suitable agent designs and behaviours, digital twins to seamlessly move between the digital and physical world, and user studies to explore how to make swarms safe and trustworthy. Such a framework would push the envelope of swarm capabilities, towards making swarms for people.
Converging mechanisms of epileptogenesis after brain injury
Traumatic brain injury (TBI), a leading cause of acquired epilepsy, results in primary cellular injury as well as secondary neurophysiological and inflammatory responses which contribute to epileptogenesis. I will present our recent studies identifying a role for neuro-immune interactions, specifically, the innate immune receptor Toll-like receptor 4 (TLR4), in enhancing network excitability and cell loss in hippocampal dentate gyrus early after concussive brain injury. I will describe results indicating that the transient post-traumatic increases in dentate neurogenesis which occurs during the same early post-injury period augments dentate network excitability and epileptogenesis. I will provide evidence for the beneficial effects of targeting TLR4 and neurogenesis early after brain injury in limiting epileptogenesis. We will discuss potential mechanisms for convergence of the post-traumatic neuro-immune and neurogenic changes and the implications for therapies to reduce neurological deficits and epilepsy after brain injury.
The developing visual brain – answers and questions
We will start our talk with a short video of our research, illustrating methods (some old and new) and findings that have provided our current understanding of how visual capabilities develop in infancy and early childhood. However, our research poses some outstanding questions. We will briefly discuss three issues, which are linked by a common focus on the development of visual attentional processing: (1) How do recurrent cortical loops contribute to development? Cortical selectivity (e.g., to orientation, motion, and binocular disparity) develops in the early months of life. However, these systems are not purely feedforward but depend on parallel pathways, with recurrent feedback loops playing a critical role. The development of diverse networks, particularly for motion processing, may explain changes in dynamic responses and resolve developmental data obtained with different methodologies. One possible role for these loops is in top-down attentional control of visual processing. (2) Why do hyperopic infants become strabismic (cross-eyes)? Binocular interaction is a particularly sensitive area of development. Standard clinical accounts suppose that long-sighted (hyperopic) refractive errors require accommodative effort, putting stress on the accommodation-convergence link that leads to its breakdown and strabismus. Our large-scale population screening studies of 9-month infants question this: hyperopic infants are at higher risk of strabismus and impaired vision (amblyopia and impaired attention) but these hyperopic infants often under- rather than over-accommodate. This poor accommodation may reflect poor early attention processing, possibly a ‘soft sign’ of subtle cerebral dysfunction. (3) What do many neurodevelopmental disorders have in common? Despite similar cognitive demands, global motion perception is much more impaired than global static form across diverse neurodevelopmental disorders including Down and Williams Syndromes, Fragile-X, Autism, children with premature birth and infants with perinatal brain injury. These deficits in motion processing are associated with deficits in other dorsal stream functions such as visuo-motor co-ordination and attentional control, a cluster we have called ‘dorsal stream vulnerability’. However, our neuroimaging measures related to motion coherence in typically developing children suggest that the critical areas for individual differences in global motion sensitivity are not early motion-processing areas such as V5/MT, but downstream parietal and frontal areas for decision processes on motion signals. Although these brain networks may also underlie attentional and visuo-motor deficits , we still do not know when and how these deficits differ across different disorders and between individual children. Answering these questions provide necessary steps, not only increasing our scientific understanding of human visual brain development, but also in designing appropriate interventions to help each child achieve their full potential.
How brain evolutionary mechanisms could inspire AI structural designs
Across evolution and, in particular, in brain evolutionary development we can observe how diverse adaptive biological mechanisms are displayed as a solution to environmental demands. In this talk, I will discuss some examples of emerging evolutionary developmental strategies allowing to increase brain computational capacities and how neurodevelopmental conservation, divergence, and convergence would inspire AI systems optimization.
Autism spectrum disorder: from gene discovery to functional insights
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting up to 1% of the population. Over the past few years, large-scale genomic studies have identified hundreds of genetic loci associated with liability to ASD. It is now time to translate these genetic discoveries into functional studies that can help us understand convergences and divergences across risk genes, and build pre-clinical cell and animal models. In this seminar, I will discuss some of the most recent findings on the genetic risk architecture of ASD. I will then expand on our work on biomarkers discovery and neurodevelopmental analyses in two rare genetic conditions associated with ASD: ADNP and DDX3X syndrome.
Neural circuit redundancy, stability, and variability in developmental brain disorders
Despite the consistency of symptoms at the cognitive level, we now know that brain disorders like Autism and Schizophrenia can each arise from mutations in >100 different genes. Presumably there is a convergence of “symptoms” at the level of neural circuits in diagnosed individuals. In this talk I will argue that redundancy in neural circuit parameters implies that we should take a circuit-function rather that circuit-component approach to understanding these disorders. Then I will present our recent empirical work testing a circuit-function theory for Autism: the idea that neural circuits show excess trial-to-trial variability in response to sensory stimuli, and instability in the representations across a timescale of days. For this we analysed in vivo neural population activity data recorded from somatosensory cortex of mouse models of Fragile-X syndrome, a disorder related to autism. Work with Beatriz Mizusaki (Univ of Bristol), Nazim Kourdougli, Anand Suresh, and Carlos Portera-Cailliau (Univ of California, Los Angeles).
convergence coverage
13 items