TopicNeuro

cortical surface

4 Seminars1 ePoster

Latest

SeminarNeuroscience

The pervasive role of visuospatial coding

Edward Silson
School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
Feb 1, 2022

Historically, retinotopic organisation (the spatial mapping of the retina across the cortical surface) was considered the purview of early regions of visual cortex (V1-V4) only and that anterior, more cognitively involved regions abstracted this information away. The contemporary view is quite different. Here, with Advancing technologies and analysis methods, we see that retinotopic information is not simply thrown away by these regions but rather is maintained to the potential benefit of our broader cognition. This maintenance of visuospatial coding extends not only through visual cortex, but is present in parietal, frontal, medial and subcortical structures involved with coordinating-movements, mind-wandering and even memory. In this talk, I will outline some of the key empirical findings from my own work and the work of others that shaped this contemporary perspective.

SeminarNeuroscience

Global AND Scale-Free? Spontaneous cortical dynamics between functional networks and cortico-hippocampal communication

Federico Stella
Battaglia lab, Donders Institute
Jan 27, 2021

Recent advancements in anatomical and functional imaging emphasize the presence of whole-brain networks organized according to functional and connectivity gradients, but how such structure shapes activity propagation and memory processes still lacks asatisfactory model. We analyse the fine-grained spatiotemporal dynamics of spontaneous activity in the entire dorsal cortex. through simultaneous recordings of wide-field voltage sensitive dye transients (VS), cortical ECoG, and hippocampal LFP in anesthetized mice. Both VS and ECoG show cortical avalanches. When measuring avalanches from the VS signal, we find a major deviation of the size scaling from the power-law distribution predicted by the criticality hypothesis and well approximated by the results from the ECoG. Breaking from scale-invariance, avalanches can thus be grouped in two regimes. Small avalanches consists of a limited number of co-activation modes involving a sub-set of cortical networks (related to the Default Mode Network), while larger avalanches involve a substantial portion of the cortical surface and can be clustered into two families: one immediately preceded by Retrosplenial Cortex activation and mostly involving medial-posterior networks, the other initiated by Somatosensory Cortex and extending preferentially along the lateral-anterior region. Rather than only differing in terms of size, these two set of events appear to be associated with markedly different brain-wide dynamical states: they are accompaniedby a shift in the hippocampal LFP, from the ripple band (smaller) to the gamma band (larger avalanches), and correspond to opposite directionality in the cortex-to-hippocampus causal relationship. These results provide a concrete description of global cortical dynamics, and shows how cortex in its entirety is involved in bi-directional communication in the hippocampus even in sleep-like states.

ePosterNeuroscience

Stitching cortices: A cortical surface reconstruction method for lesser-known animals

Heitor Mynssen, Magdalena Boch, Nina Patzke, Rogier B. Mars, Khallil Taverna Chaim, Bruno Mota, Kamilla Avelino-de-Souza

FENS Forum 2024

cortical surface coverage

5 items

Seminar4
ePoster1
Domain spotlight

Explore how cortical surface research is advancing inside Neuro.

Visit domain