TopicNeuro

Cross Species

10 Seminars10 ePosters

Latest

SeminarNeuroscienceRecording

Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex

Samuel Post
University of California, Riverside
Nov 29, 2023

Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.

SeminarNeuroscience

Themes and Variations: Circuit mechanisms of behavioral evolution

Vanessa Ruta
The Rockefeller University, New York, USA
Sep 29, 2021

Animals exhibit extraordinary variation in their behavior, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviors in Drosophila to glean insight into how evolution shapes the nervous system to generate species-specific behaviors. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 neurons serve as a conserved node in regulating male courtship: these neurons are selectively activated by the sensory cues indicative of an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioral evolution, shedding light on the types of changes that are possible and preferable within brain circuits.

SeminarNeuroscienceRecording

Structure-mapping in Human Learning

Dedre Gentner
Northwestern University
Apr 2, 2021

Across species, humans are uniquely able to acquire deep relational systems of the kind needed for mathematics, science, and human language. Analogical comparison processes are a major contributor to this ability. Analogical comparison engages a structure-mapping process (Gentner, 1983) that fosters learning in at least three ways: first, it highlights common relational systems and thereby promotes abstraction; second, it promotes inferences from known situations to less familiar situations; and, third, it reveals potentially important differences between examples. In short, structure-mapping is a domain-general learning process by which abstract, portable knowledge can arise from experience. It is operative from early infancy on, and is critical to the rapid learning we see in human children. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning. Although structure-mapping processes are present pre-linguistically, their scope is greatly amplified by language. Analogical processes are instrumental in learning relational language, and the reverse is also true: relational language acts to preserve relational abstractions and render them accessible for future learning and reasoning.

SeminarNeuroscience

Life of Pain and Pleasure

Irene Tracey
University of Oxford
Mar 10, 2021

The ability to experience pain is old in evolutionary terms. It is an experience shared across species. Acute pain is the body’s alarm system, and as such it is a good thing. Pain that persists beyond normal tissue healing time (3-4 months) is defined as chronic – it is the system gone wrong and it is not a good thing. Chronic pain has recently been classified as both a symptom and disease in its own right. It is one of the largest medical health problems worldwide with one in five adults diagnosed with the condition. The brain is key to the experience of pain and pain relief. This is the place where pain emerges as a perception. So, relating specific brain measures using advanced neuroimaging to the change patients describe in their pain perception induced by peripheral or central sensitization (i.e. amplification), psychological or pharmacological mechanisms has tremendous value. Identifying where amplification or attenuation processes occur along the journey from injury to the brain (i.e. peripheral nerves, spinal cord, brainstem and brain) for an individual and relating these neural mechanisms to specific pain experiences, measures of pain relief, persistence of pain states, degree of injury and the subject's underlying genetics, has neuroscientific and potential diagnostic relevance. This is what neuroimaging has afforded – a better understanding and explanation of why someone’s pain is the way it is. We can go ‘behind the scenes’ of the subjective report to find out what key changes and mechanisms make up an individual’s particular pain experience. A key area of development has been pharmacological imaging where objective evidence of drugs reaching the target and working can be obtained. We even now understand the mechanisms of placebo analgesia – a powerful phenomenon known about for millennia. More recently, researchers have been investigating through brain imaging whether there is a pre-disposing vulnerability in brain networks towards developing chronic pain. So, advanced neuroimaging studies can powerfully aid explanation of a subject’s multidimensional pain experience, pain relief (analgesia) and even what makes them vulnerable to developing chronic pain. The application of this goes beyond the clinic and has relevance in courts of law, and other areas of society, such as in veterinary care. Relatively far less work has been directed at understanding what changes in the brain occur during altered states of consciousness induced either endogenously (e.g. sleep) or exogenously (e.g. anaesthesia). However, that situation is changing rapidly. Our recent multimodal neuroimaging work explores how anaesthetic agents produce altered states of consciousness such that perceptual experiences of pain and awareness are degraded. This is bringing us fascinating insights into the complex phenomenon of anaesthesia, consciousness and even the concept of self-hood. These topics will be discussed in my talk alongside my ‘side-story’ of life as a scientist combining academic leadership roles with doing science and raising a family.

SeminarNeuroscienceRecording

Circuit mechanisms underlying the dynamic control of cortical processing by subcortical neuromodulators

Anita Disney
Duke University School of Medicine
Oct 23, 2020

Behavioral states such as arousal and attention can have profound effects on sensory processing, determining how – sometimes whether – a stimulus is processed. This state-dependence is believed to arise, at least in part, as a result of inputs to cortex from subcortical structures that release neuromodulators such as acetylcholine, noradrenaline, and serotonin, often non-synaptically. The mechanisms that underlie the interaction between these “wireless” non-synaptic signals and the “wired” cortical circuit are not well understood. Furthermore, neuromodulatory signaling is traditionally considered broad in its impact across cortex (within a species) and consistent in its form and function across species (at least in mammals). The work I will present approaches the challenge of understanding neuromodulatory action in the cortex from a number of angles: anatomy, physiology, pharmacology, and chemistry. The overarching goal of our effort is to elucidate the mechanisms behind local neuromodulation in the cortex of non-human primates, and to reveal differences in structure and function across cortical model systems.

SeminarNeuroscienceRecording

A sense of time in human evolution

Alexandra Rosati
University of Michigan
Oct 23, 2020

What psychological mechanisms do primates use to engage in self-control, and what is the ultimate function of these skills? I will argue that a suite of decision-making capacities, including choices about the timing of benefits, evolved in the context of foraging behaviors and vary with ecological complexity across species. Then, I will examine how these foraging capacities can be generalized to solve novel problems posing temporal costs that are important for humans, such as cooking food, and can therefore underpin evolutionary transitions in behavior. Finally, I will present work testing the hypothesis that a limited future time horizon constrains the expression of other complex abilities in nonhumans, explaining the emergence of human-unique forms of social cognition and behavior.

SeminarNeuroscienceRecording

Local and global organization of synaptic inputs on cortical dendrites

Julijana Gjorgjieva
Max Planck Institute for Brain Research, Technical University of Munich
Sep 18, 2020

Synaptic inputs on cortical dendrites are organized with remarkable subcellular precision at the micron level. This organization emerges during early postnatal development through patterned spontaneous activity and manifests both locally where synapses with similar functional properties are clustered, and globally along the axis from dendrite to soma. Recent experiments reveal species-specific differences in the local and global synaptic organization in mouse, ferret and macaque visual cortex. I will present a computational framework that implements functional and structural plasticity from spontaneous activity patterns to generate these different types of organization across species and scales. Within this framework, a single anatomical factor - the size of the visual cortex and the resulting magnification of visual space - can explain the observed differences. This allows us to make predictions about the organization of synapses also in other species and indicates that the proximal-distal axis of a dendrite might be central in endowing a neuron with powerful computational capabilities.

SeminarNeuroscienceRecording

Natural visual stimuli for mice

Thomas Euler
University of Tubingen
Jul 17, 2020

During the course of evolution, a species’ environment shapes its sensory abilities, as individuals with more optimized sensory abilities are more likely survive and procreate. Adaptations to the statistics of the natural environment can be observed along the early visual pathway and across species. Therefore, characterising the properties of natural environments and studying the representation of natural scenes along the visual pathway is crucial for advancing our understanding of the structure and function of the visual system. In the past 20 years, mice have become an important model in vision research, but the fact that they live in a different environment than primates and have different visual needs is rarely considered. One particular challenge for characterising the mouse’s visual environment is that they are dichromats with photoreceptors that detect UV light, which the typical camera does not record. This also has consequences for experimental visual stimulation, as the blue channel of computer screens fails to excite mouse UV cone photoreceptors. In my talk, I will describe our approach to recording “colour” footage of the habitat of mice – from the mouse’s perspective – and to studying retinal circuits in the ex vivo retina with natural movies.

SeminarNeuroscienceRecording

Theme and variations: circuit mechanisms of behavioural evolution

Vanessa Ruta
Rockefeller University
Jul 1, 2020

Animals exhibit extraordinary variation in their behaviour, yet little is known about the neural mechanisms that generate this diversity. My lab has been taking advantage of the rapid diversification of male courtship behaviours in Drosophila to gain insight into how evolution shapes the nervous system to generate species-specific behaviours. By translating neurogenetic tools from D. melanogaster to closely related Drosophila species, we have begun to directly compare the homologous neural circuits and pinpoint sites of adaptive change. Across species, P1 interneurons serve as a conserved and key node in regulating male courtship: these neurons are selectively activated by the sensory cues carried by an appropriate mate and their activation triggers enduring courtship displays. We have been examining how different sensory pathways converge onto P1 neurons to regulate a male’s state of arousal, honing his pursuit of a prospective partner. Moreover, by performing cross-species comparison of these circuits, we have begun to gain insight into how reweighting of sensory inputs to P1 neurons underlies species-specific mate recognition. Our results suggest how variation at flexible nodes within the nervous system can serve as a substrate for behavioural evolution, shedding light on the types of changes that are possible and preferable within brain circuits.

ePosterNeuroscience

Thoughtful faces: Using facial features to infer naturalistic cognitive processing across species

Alejandro Tlaie Boria, Katharine Shapcott, Muad Abd el Hay, Berkutay Mert, Pierre-Antoine Ferracci, Robert Taylor, Iuliia Glukhova, Martha Nari Havenith, Marieke Schölvinck

COSYNE 2023

ePosterNeuroscience

Information-preserving modulation as a principle of sensory coding during locomotion across species

Jonathan Gant, Wiktor Mlynarski

COSYNE 2025

ePosterNeuroscience

Invariant synaptic density across species links functional stability and wiring optimization principles

Andre Ferreira Castro, Albert Cardona

COSYNE 2025

ePosterNeuroscience

Structural organization of inhibitory neurons is preserved across species and cortical areas

Felipe Yanez, Nima Dehghani, Marcel Oberlaender

COSYNE 2025

ePosterNeuroscience

Context-guided sequence memory across species

Ben Slater, Emma Woolgar, Jennifer Nacef, Christopher Petkov, Yukiko Kikuchi, Alexander Easton

FENS Forum 2024

ePosterNeuroscience

Cross species single-cell/nucleus RNA-seq uncovers the evolutionarily conserved pathological mechanisms of vascular contribution to Alzheimer’s disease

Elanur Yilmaz, Prabesh Bhattarai, Ozkan Is, Xue Wang, Yuhao Min, Nastasia Nelson, Annie J. Lee, Mehmet I. Cosacak, Badri Vardarajan, Richard Mayeux, Nilufer Ertekin-Taner, Caghan Kizil

FENS Forum 2024

ePosterNeuroscience

A machine learning toolbox to detect and compare sharp-wave ripples across species

Andrea Navas-Olive, Adrian Rubio, Saman Abbaspoor, Kari L Hoffman, Liset M de la Prida

FENS Forum 2024

ePosterNeuroscience

Mapping neural recovery: Comparative molecular insights into spinal cord injury across species

Nicola Regazzi, Claudia Kathe, Thomas H. Hutson, Matthieu Gautier, Alan Y. Teo, Katia Galan, Simon Borgognon, Charles F. V. Latchoumane, Sandra Braz, Joana Nogueira-Rodrigues, Jeff M. Gidday, Matthew Lawrence, Monica M. Sousa, Quentin Barraud, Mark A. Anderson, Michael Skinnider, Jocelyne Bloch, Grégoire Courtine, Jordan Squair

FENS Forum 2024

ePosterNeuroscience

Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling

Lin Lin, Bin Yu, Qianqian Zhang, Xiaoming Li

FENS Forum 2024

ePosterNeuroscience

Sharing the spotlight: Uncovering common attentional dynamics across species

Iuliia Glukhova, Alejandro Tlaie, Robert Taylor, Pierre-Antoine Ferracci, Katharine Shapcott, Deeksha Krishnamoorthy, Olga Arne, Martha Nari Havenith, Marieke Schölvinck

FENS Forum 2024

Cross Species coverage

20 items

Seminar10
ePoster10
Domain spotlight

Explore how Cross Species research is advancing inside Neuro.

Visit domain