Darkness
darkness
Latest
A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation
During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.
A Flash of Darkness within Dusk: Crossover inhibition in the mouse retina
To survive in the wild small rodents evolved specialized retinas. To escape predators, looming shadows need to be detected with speed and precision. To evade starvation, small seeds, grass, nuts and insects need to also be detected quickly. Some of these succulent seeds and insects may be camouflaged offering only low contrast targets.Moreover, these challenging tasks need to be accomplished continuously at dusk, night, dawn and daytime. Crossover inhibition is thought to be involved in enhancing contrast detectionin the microcircuits of the inner plexiform layer of the mammalian retina. The AII amacrine cells are narrow field cells that play a key role in crossover inhibition. Our lab studies the synaptic physiology that regulates glycine release from AII amacrine cellsin mouse retina. These interneurons receive excitation from rod and conebipolar cells and transmit excitation to ON-type bipolar cell terminals via gap junctions. They also transmit inhibition via multiple glycinergic synapses onto OFF bipolar cell terminals.AII amacrine cells are thus a central hub of synaptic information processing that cross links the ON and the OFF pathways. What are the functions of crossover inhibition? How does it enhance contrast detection at different ambient light levels? How is the dynamicrange, frequency response and synaptic gain of glycine release modulated by luminance levels and circadian rhythms? How is synaptic gain changed by different extracellular neuromodulators, like dopamine, and by intracellular messengers like cAMP, phosphateand Ca2+ ions from Ca2+ channels and Ca2+ stores? My talk will try to answer some of these questions and will pose additional ones. It will end with further hypothesis and speculations on the multiple roles of crossover inhibition.
Distance-tuned neurons drive specialized path integration calculations in medial entorhinal cortex
During navigation, animals estimate their position using path integration and landmarks, engaging many brain areas. Whether these areas follow specialized or universal cue integration principles remains incompletely understood. We combine electrophysiology with virtual reality to quantify cue integration across thousands of neurons in three navigation-relevant areas: primary visual cortex (V1), retrosplenial cortex (RSC), and medial entorhinal cortex (MEC). Compared with V1 and RSC, path integration influences position estimates more in MEC, and conflicts between path integration and landmarks trigger remapping more readily. Whereas MEC codes position prospectively, V1 codes position retrospectively, and RSC is intermediate between the two. Lowered visual contrast increases the influence of path integration on position estimates only in MEC. These properties are most pronounced in a population of MEC neurons, overlapping with grid cells, tuned to distance run in darkness. These results demonstrate the specialized role that path integration plays in MEC compared with other navigation-relevant cortical areas.
Population dynamics of the thalamic head direction system during drift and reorientation
The head direction (HD) system is classically modeled as a ring attractor network which ensures a stable representation of the animal’s head direction. This unidimensional description popularized the view of the HD system as the brain’s internal compass. However, unlike a globally consistent magnetic compass, the orientation of the HD system is dynamic, depends on local cues and exhibits remapping across familiar environments5. Such a system requires mechanisms to remember and align to familiar landmarks, which may not be well described within the classic 1-dimensional framework. To search for these mechanisms, we performed large population recordings of mouse thalamic HD cells using calcium imaging, during controlled manipulations of a visual landmark in a familiar environment. First, we find that realignment of the system was associated with a continuous rotation of the HD network representation. The speed and angular distance of this rotation was predicted by a 2nd dimension to the ring attractor which we refer to as network gain, i.e. the instantaneous population firing rate. Moreover, the 360-degree azimuthal profile of network gain, during darkness, maintained a ‘memory trace’ of a previously displayed visual landmark. In a 2nd experiment, brief presentations of a rotated landmark revealed an attraction of the network back to its initial orientation, suggesting a time-dependent mechanism underlying the formation of these network gain memory traces. Finally, in a 3rd experiment, continuous rotation of a visual landmark induced a similar rotation of the HD representation which persisted following removal of the landmark, demonstrating that HD network orientation is subject to experience-dependent recalibration. Together, these results provide new mechanistic insights into how the neural compass flexibly adapts to environmental cues to maintain a reliable representation of the head direction.
Analogical Reasoning Plus: Why Dissimilarities Matter
Analogical reasoning remains foundational to the human ability to forge meaningful patterns within the sea of information that continually inundates the senses. Yet, meaningful patterns rely not only on the recognition of attributional similarities but also dissimilarities. Just as the perception of images rests on the juxtaposition of lightness and darkness, reasoning relationally requires systematic attention to both similarities and dissimilarities. With that awareness, my colleagues and I have expanded the study of relational reasoning beyond analogous reasoning and attributional similarities to highlight forms based on the nature of core dissimilarities: anomalous, antinomous, and antithetical reasoning. In this presentation, I will delineate the character of these relational reasoning forms; summarize procedures and measures used to assess them; overview key research findings; and describe how the forms of relational reasoning work together in the performance of complex problem solving. Finally, I will share critical next steps for research which has implications for instructional practice.
Visual recovery in the amblyopic mouse through dark exposure, light reintroduction and perisynaptic proteolysis
Arousal modulates retinal output
Neural responses in the visual system are usually not purely visual but depend on behavioural and internal states such as arousal. This dependence is seen both in primary visual cortex (V1) and in subcortical brain structures receiving direct retinal input. In this talk, I will show that modulation by behavioural state arises as early as in the output of the retina.To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superficial superior colliculus (sSC) of mice. The activity of about half of the boutons depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced the boutons’ visual responses to preferred direction and their selectivity for direction and orientation.Arousal may affect activity in retinal boutons by presynaptic neuromodulation. To test whether the effects of arousal occur already in the retina, we recorded from retinal axons in the optic tract. We found that, in darkness, more than one third of the recorded axons was significantly correlated with running speed. Arousal had similar effects postsynaptically, in sSC neurons, independent of activity in V1, the other main source of visual inputs to colliculus. Optogenetic inactivation of V1 generally decreased activity in collicular neurons but did not diminish the effects of arousal. These results indicate that arousal modulates activity at every stage of the visual system. In the future, we will study the purpose and the underlying mechanisms of behavioural modulation in the early visual system
Slow global population dynamics propagating through the medial entorhinal cortex
The medial entorhinal cortex (MEC) supports the brain’s representation of space with distinct cell types whose firing is tuned to features of the environment (grid, border, and object-vector cells) or navigation (head-direction and speed cells). While the firing properties of these functionally-distinct cell types are well characterized, how they interact with one another remains unknown. To determine how activity self-organizes in the MEC network, we tested mice in a spontaneous locomotion task under sensory-deprived conditions. Using 2-photon calcium imaging, we monitored the activity of large populations of MEC neurons in head-fixed mice running on a wheel in darkness, in the absence of external sensory feedback tuned to navigation. We unveiled the presence of motifs that involve the sequential activation of cells in layer II of MEC (MEC-L2). We call these motifs waves. Waves lasted tens of seconds to minutes, were robust, swept through the entire network of active cells and did not exhibit any anatomical organization. Furthermore, waves did not map the position of the mouse on the wheel and were not restricted to running epochs. The majority of MEC-L2 neurons participate in this global sequential dynamics, that ties all functional cell types together. We found the waves in the most lateral region of MEC, but not in adjacent areas such as PaS or in a sensory cortex such as V1.
Why prolonged darkness increases retinal susceptibility of albino rat to light damage
darkness coverage
9 items