← Back

Deep Brain Stimulation

Topic spotlight
TopicNeuro

deep brain stimulation

Discover seminars, jobs, and research tagged with deep brain stimulation across Neuro.
13 curated items13 Seminars
Updated about 1 year ago
13 items · deep brain stimulation

Latest

13 results
SeminarNeuroscience

SWEBAGS conference 2024: Shared network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease: From modulation of oscillatory cortex – basal ganglia communication to intelligent clinical brain computer interfaces

Wolf-Julian Neumann
Charité – Universitätsmedizin Berlin
Dec 5, 2024
SeminarNeuroscienceRecording

Novel approaches to non-invasive neuromodulation for neuropsychiatric disorders; Effects of deep brain stimulation on brain function in obsessive-compulsive disorder

Damiaan Denys, MD, PhD & Andrada Neacsiu, PhD
Amsterdam UMC, Netherlands / Duke University School of Medicine, Durham, USA
Feb 29, 2024

On Thursday, February 29th, we will host Damiaan Denys and Andrada Neacsiu. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Seizure control by electrical stimulation: parameters and mechanisms

Dominique Durand
Case Western
Jan 31, 2024

Seizure suppression by deep brain stimulation (DBS) applies high frequency stimulation (HFS) to grey matter to block seizures. In this presentation, I will present the results of a different method that employs low frequency stimulation (LFS) (1 to 10Hz) of white matter tracts to prevent seizures. The approach has been shown to be effective in the hippocampus by stimulating the ventral and dorsal hippocampal commissure in both animal and human studies respectively for mesial temporal lobe seizures. A similar stimulation paradigm has been shown to be effective at controlling focal cortical seizures in rats with corpus callosum stimulation. This stimulation targets the axons of the corpus callosum innervating the focal zone at low frequencies (5 to 10Hz) and has been shown to significantly reduce both seizure and spike frequency. The mechanisms of this suppression paradigm have been elucidated with in-vitro studies and involve the activation of two long-lasting inhibitory potentials GABAB and sAHP. LFS mechanisms are similar in both hippocampus and cortical brain slices. Additionally, the results show that LFS does not block seizures but rather decreases the excitability of the tissue to prevent seizures. Three methods of seizure suppression, LFS applied to fiber tracts, HFS applied to focal zone and stimulation of the anterior nucleus of the thalamus (ANT) were compared directly in the same animal in an in-vivo epilepsy model. The results indicate that LFS generated a significantly higher level of suppression, indicating LFS of white matter tract could be a useful addition as a stimulation paradigm for the treatment of epilepsy.

SeminarNeuroscienceRecording

Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease

Doris Wang, MD, PhD & Stephanie Cernera, PhD
University of California, San Francisco, USA
Aug 31, 2023

On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Auditory input to the basal ganglia; Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control

R. Mark Richardson, MD, PhD & Darcy Diesburg, PhD
Harvard Medical School, Boston, USA / Brown University, Providence, USA
May 25, 2023

On Thursday, May 25th we will host Darcy Diesburg and Mark Richardson. Darcy Diesburg, PhD, is a post-doctoral research fellow at Brown University. She will tell us about “Deep brain stimulation and action-stopping: A cognitive neuroscience perspective on the contributions of fronto-basal ganglia circuits to inhibitory control”. Mark Richardson, MD, PhD, is the Director of Functional Neurosurgery at the Massachusetts General Hospital, Charles Pappas Associate Professor of Neurosciences at Harvard Medical School and Visiting Associate Professor of Brain and Cognitive Sciences at MIT. Beside his scientific presentation on “Auditory input to the basal ganglia”, he will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

25 years of DBS beyond movement disorders: what challenges are we facing?; Directional DBS targeting of different nuclei in the thalamus for the treatment of pain

Veerle Visser-Vandewalle, MD, PhD & Marie Krüger, MD
University Hospital Cologne, Germany / Kantonsspital St. Gallen, Switzerland & UCL / Queensquare London, UK
Feb 23, 2023

On Thursday, 23rd of February, we will host Veerle Visser-Vandewalle and Marie Krüger. Marie Krüger, MD, is is currently leading the stereotactic surgery unit in St. Gallen but is on her move to join the team at UCL / Queensquare London. She will discuss “Directional DBS targeting of different nuclei in the thalamus for the treatment of pain”. Veerle Visser-Vandewalle, MD, PhD, is the Head of the Department of Stereotactic and Functional Neurosurgery at University Hospital of Cologne. Beside his scientific presentation on “25 years of DBS beyond movement disorders: what challenges are we facing?”, she will also give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Clinical and genetic predictors of subthalamic nucleus deep brain stimulation in Parkinson’s disease

Daniel Weiß
University of Tübingen
Sep 27, 2022
SeminarNeuroscience

Adaptive Deep Brain Stimulation: Investigational System Development at the Edge of Clinical Brain Computer Interfacing

Jeffrey Herron
University of Washington
Dec 16, 2021

Over the last few decades, the use of deep brain stimulation (DBS) to improve the treatment of those with neurological movement disorders represents a critical success story in the development of invasive neurotechnology and the promise of brain-computer interfaces (BCI) to improve the lives of those suffering from incurable neurological disorders. In the last decade, investigational devices capable of recording and streaming neural activity from chronically implanted therapeutic electrodes has supercharged research into clinical applications of BCI, enabling in-human studies investigating the use of adaptive stimulation algorithms to further enhance therapeutic outcomes and improve future device performance. In this talk, Dr. Herron will review ongoing clinical research efforts in the field of adaptive DBS systems and algorithms. This will include an overview of DBS in current clinical practice, the development of bidirectional clinical-use research platforms, ongoing algorithm evaluation efforts, a discussion of current adoption barriers to be addressed in future work.

SeminarNeuroscienceRecording

The pathophysiology of prodromal Parkinson’s disease

Josh Goldberg
The Hebrew University of Jerusale,
Jun 10, 2021

Studying the pathophysiology of late stage Parkinson’s disease (PD) – after the patients have experienced severe neuronal loss – has helped develop various symptomatic treatments for PD (e.g., deep brain stimulation). However, it has been of limited use in developing neuroprotective disease-modifying therapies (DMTs), because DMTs require interventions at much earlier stages of PD when vulnerable neurons are still intact. Because PD patients exhibit various non-motor prodromal symptoms (ie, symptoms that predate diagnosis), understanding the pathophysiology underlying these symptom could lead to earlier diagnosis and intervention. In my talk, I will present a recently elucidated example of how PD pathologies alter the channel biophysics of intact vagal motoneurons (known to be selectively vulnerable in PD) to drive dysautonomia that is reminiscent of prodromal PD. I will discuss how elucidating the pathophysiology of prodromal symptoms can lead to earlier diagnosis through the development of physiological biomarkers for PD.

SeminarNeuroscience

Mapping the brain’s remaining terra incognita

A/Prof Andrew Zalesky and Dr Ye Tian
Monash Biomedical Imaging
Apr 1, 2021

In this webinar, Dr Ye Tian and A/Prof Andrew Zalesky will present new research on mapping the functional architecture of the human subcortex. They used 3T and 7T functional MRI from more than 1000 people to map one of the most detailed functional atlases of the human subcortex to date. Comprising four hierarchical scales, the new atlas reveals the complex topographic organisation of the subcortex, which dynamically adapts to changing cognitive demands. The atlas enables whole-brain mapping of connectomes and has been used to optimise targeting of deep brain stimulation. This joint work with Professors Michael Breakspear and Daniel Margulies was recently published in Nature Neuroscience. In the second part of the webinar, Dr Ye Tian will present her current research on the biological ageing of different body systems, including the human brain, in health and degenerative conditions. Conducted in more than 30,000 individuals, this research reveals associations between the biological ageing of different body systems. She will show the impact of lifestyle factors on ageing and how advanced ageing can predict the risk of mortality. Associate Professor Andrew Zalesky is a Principal Researcher with a joint appointment between the Faculties of Engineering and Medicine at The University of Melbourne. He currently holds a NHMRC Senior Research Fellowship and serves as Associate Editor for Brain Topography, Neuroimage Clinical and Network Neuroscience. Dr Zalesky is recognised for the novel tools that he has developed to analyse brain networks and their application to the study of neuropsychiatric disorders. Dr Ye Tian is a postdoctoral researcher at the Department of Psychiatry, University of Melbourne. She received her PhD from the University of Melbourne in 2020, during which she established the Melbourne Subcortex Atlas. Dr Tian is interested in understanding brain organisation and using brain imaging techniques to unveil neuropathology underpinning neuropsychiatric disorders.

deep brain stimulation coverage

13 items

Seminar13
Domain spotlight

Explore how deep brain stimulation research is advancing inside Neuro.

Visit domain