World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
TopicNeuro

Demon Attack

1 Seminar
Explore NeuroBrowse all domains
Explore NeuroBrowse all domains

Latest

SeminarNeuroscienceRecording

Learning Relational Rules from Rewards

Guillermo Puebla
University of Bristol
Oct 13, 2022

Humans perceive the world in terms of objects and relations between them. In fact, for any given pair of objects, there is a myriad of relations that apply to them. How does the cognitive system learn which relations are useful to characterize the task at hand? And how can it use these representations to build a relational policy to interact effectively with the environment? In this paper we propose that this problem can be understood through the lens of a sub-field of symbolic machine learning called relational reinforcement learning (RRL). To demonstrate the potential of our approach, we build a simple model of relational policy learning based on a function approximator developed in RRL. We trained and tested our model in three Atari games that required to consider an increasingly number of potential relations: Breakout, Pong and Demon Attack. In each game, our model was able to select adequate relational representations and build a relational policy incrementally. We discuss the relationship between our model with models of relational and analogical reasoning, as well as its limitations and future directions of research.

Demon Attack coverage

1 items

Seminar1
Domain spotlight

Explore how Demon Attack research is advancing inside Neuro.

Visit domain
January 2026
Full calendar →

Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.