depth
Latest
COSYNE 2025
The COSYNE 2025 conference was held in Montreal with post-conference workshops in Mont-Tremblant, continuing to provide a premier forum for computational and systems neuroscience. Attendees exchanged cutting-edge research in a single-track main meeting and in-depth specialized workshops, reflecting Cosyne’s mission to understand how neural systems function:contentReference[oaicite:6]{index=6}:contentReference[oaicite:7]{index=7}.
Unmotivated bias
In this talk, I will explore how social affective biases arise even in the absence of motivational factors as an emergent outcome of the basic structure of social learning. In several studies, we found that initial negative interactions with some members of a group can cause subsequent avoidance of the entire group, and that this avoidance perpetuates stereotypes. Additional cognitive modeling discovered that approach and avoidance behavior based on biased beliefs not only influences the evaluative (positive or negative) impressions of group members, but also shapes the depth of the cognitive representations available to learn about individuals. In other words, people have richer cognitive representations of members of groups that are not avoided, akin to individualized vs group level categories. I will end presenting a series of multi-agent reinforcement learning simulations that demonstrate the emergence of these social-structural feedback loops in the development and maintenance of affective biases.
How are the epileptogenesis clocks ticking?
The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.
Epileptic micronetworks and their clinical relevance
A core aspect of clinical epileptology revolves around relating epileptic field potentials to underlying neural sources (e.g. an “epileptogenic focus”). Yet still, how neural population activity relates to epileptic field potentials and ultimately clinical phenomenology, remains far from being understood. After a brief overview on this topic, this seminar will focus on unpublished work, with an emphasis on seizure-related focal spreading depression. The presented results will include hippocampal and neocortical chronic in vivo two-photon population imaging and local field potential recordings of epileptic micronetworks in mice, in the context of viral encephalitis or optogenetic stimulation. The findings are corroborated by invasive depth electrode recordings (macroelectrodes and BF microwires) in epilepsy patients during pre-surgical evaluation. The presented work carries general implications for clinical epileptology, and basic epilepsy research.
Brain Connectivity Workshop
Founded in 2002, the Brain Connectivity Workshop (BCW) is an annual international meeting for in-depth discussions of all aspects of brain connectivity research. By bringing together experts in computational neuroscience, neuroscience methodology and experimental neuroscience, it aims to improve the understanding of the relationship between anatomical connectivity, brain dynamics and cognitive function. These workshops have a unique format, featuring only short presentations followed by intense discussion. This year’s workshop is co-organised by Wellcome, putting the spotlight on brain connectivity in mental health disorders. We look forward to having you join us for this exciting, thought-provoking and inclusive event.
In vivo direct imaging of neuronal activity at high temporospatial resolution
Advanced noninvasive neuroimaging methods provide valuable information on the brain function, but they have obvious pros and cons in terms of temporal and spatial resolution. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) effect provides good spatial resolution in the order of millimeters, but has a poor temporal resolution in the order of seconds due to slow hemodynamic responses to neuronal activation, providing indirect information on neuronal activity. In contrast, electroencephalography (EEG) and magnetoencephalography (MEG) provide excellent temporal resolution in the millisecond range, but spatial information is limited to centimeter scales. Therefore, there has been a longstanding demand for noninvasive brain imaging methods capable of detecting neuronal activity at both high temporal and spatial resolution. In this talk, I will introduce a novel approach that enables Direct Imaging of Neuronal Activity (DIANA) using MRI that can dynamically image neuronal spiking activity in milliseconds precision, achieved by data acquisition scheme of rapid 2D line scan synchronized with periodically applied functional stimuli. DIANA was demonstrated through in vivo mouse brain imaging on a 9.4T animal scanner during electrical whisker-pad stimulation. DIANA with milliseconds temporal resolution had high correlations with neuronal spike activities, which could also be applied in capturing the sequential propagation of neuronal activity along the thalamocortical pathway of brain networks. In terms of the contrast mechanism, DIANA was almost unaffected by hemodynamic responses, but was subject to changes in membrane potential-associated tissue relaxation times such as T2 relaxation time. DIANA is expected to break new ground in brain science by providing an in-depth understanding of the hierarchical functional organization of the brain, including the spatiotemporal dynamics of neural networks.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Bernstein Student Workshop Series
The Bernstein Student Workshop Series is an initiative of the student members of the Bernstein Network. It provides a unique opportunity to enhance the technical exchange on a peer-to-peer basis. The series is motivated by the idea of bridging the gap between theoretical and experimental neuroscience by bringing together methodological expertise in the network. Unlike conventional workshops, a talented junior scientist will first give a tutorial about a specific theoretical or experimental technique, and then give a talk about their own research to demonstrate how the technique helps to address neuroscience questions. The workshop series is designed to cover a wide range of theoretical and experimental techniques and to elucidate how different techniques can be applied to answer different types of neuroscience questions. Combining the technical tutorial and the research talk, the workshop series aims to promote knowledge sharing in the community and enhance in-depth discussions among students from diverse backgrounds.
Seeing the world through moving photoreceptors - binocular photomechanical microsaccades give fruit fly hyperacute 3D-vision
To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors.
How vision succeeds in a hidden world
COSYNE 2022
The annual Cosyne meeting provides an inclusive forum for the exchange of empirical and theoretical approaches to problems in systems neuroscience, in order to understand how neural systems function:contentReference[oaicite:2]{index=2}. The main meeting is single-track, with invited talks selected by the Executive Committee and additional talks and posters selected by the Program Committee based on submitted abstracts:contentReference[oaicite:3]{index=3}. The workshops feature in-depth discussion of current topics of interest in a small group setting:contentReference[oaicite:4]{index=4}.
Functional ultrasound imaging during behavior
The dream of a systems neuroscientist is to be able to unravel neural mechanisms that give rise to behavior. It is increasingly appreciated that behavior involves the concerted distributed activity of multiple brain regions so the focus on single or few brain areas might hinder our understanding. There have been quite a few technological advancements in this domain. Functional ultrasound imaging (fUSi) is an emerging technique that allows us to measure neural activity from medial frontal regions down to subcortical structures up to a depth of 20 mm. It is a method for imaging transient changes in cerebral blood volume (CBV), which are proportional to neural activity changes. It has excellent spatial resolution (~100 μm X 100 μm X 400 μm); its temporal resolution can go down to 100 milliseconds. In this talk, I will present its use in two model systems: marmoset monkeys and rats. In marmoset monkeys, we used it to delineate a social – vocal network involved in vocal communication while in rats, we used it to gain insights into brain wide networks involved in evidence accumulation based decision making. fUSi has the potential to provide an unprecedented access to brain wide dynamics in freely moving animals performing complex behavioral tasks.
How much depth do you see? It depends…
Neural network models of binocular depth perception
Our visual experience of living in a three-dimensional world is created from the information contained in the two-dimensional images projected into our eyes. The overlapping visual fields of the two eyes mean that their images are highly correlated, and that the small differences that are present represent an important cue to depth. Binocular neurons encode this information in a way that both maximises efficiency and optimises disparity tuning for the depth structures that are found in our natural environment. Neural network models provide a clear account of how these binocular neurons encode the local binocular disparity in images. These models can be expanded to multi-layer models that are sensitive to salient features of scenes, such as the orientations and discontinuities between surfaces. These deep neural network models have also shown the importance of binocular disparity for the segmentation of images into separate objects, in addition to the estimation of distance. These results demonstrate the usefulness of machine learning approaches as a tool for understanding biological vision.
Being awake while sleeping, being asleep while awake: consequences on cognition and consciousness
Sleep is classically presented as an all-or-nothing phenomenon. Yet, there is increasing evidence showing that sleep and wakefulness can actually intermingle and that wake-like and sleep-like activity can be observed concomitantly in different brain regions. I will here explore the implications of this conception of sleep as a local phenomenon for cognition and consciousness. In the first part of my presentation, I will show how local modulations of sleep depth during sleep could support the processing of sensory information by sleepers. I will also how, under certain circumstances, sleepers can learn while sleeping but also how they can forget. In the second part, I will show how the reverse phenomenon, sleep intrusions during waking, can explain modulations of attention. I will focus in particular on modulations of subjective experience and how the local sleep framework can inform our understanding of everyday phenomena such as mind wandering and mind blanking. Through this presentation and the exploration of both sleep and wakefulness, I will seek to connect changes in neurophysiology with changes in behaviour and subjective experience.
StereoSpike: Depth Learning with a Spiking Neural Network
Depth estimation is an important computer vision task, useful in particular for navigation in autonomous vehicles, or for object manipulation in robotics. Here we solved it using an end-to-end neuromorphic approach, combining two event-based cameras and a Spiking Neural Network (SNN) with a slightly modified U-Net-like encoder-decoder architecture, that we named StereoSpike. More specifically, we used the Multi Vehicle Stereo Event Camera Dataset (MVSEC). It provides a depth ground-truth, which was used to train StereoSpike in a supervised manner, using surrogate gradient descent. We propose a novel readout paradigm to obtain a dense analog prediction –the depth of each pixel– from the spikes of the decoder. We demonstrate that this architecture generalizes very well, even better than its non-spiking counterparts, leading to state-of-the-art test accuracy. To the best of our knowledge, it is the first time that such a large-scale regression problem is solved by a fully spiking network. Finally, we show that low firing rates (<10%) can be obtained via regularization, with a minimal cost in accuracy. This means that StereoSpike could be implemented efficiently on neuromorphic chips, opening the door for low power real time embedded systems.
Gap Junction Coupling between Photoreceptors
Simply put, the goal of my research is to describe the neuronal circuitry of the retina. The organization of the mammalian retina is certainly complex but it is not chaotic. Although there are many cell types, most adhere to a relatively constant morphology and they are distributed in non-random mosaics. Furthermore, each cell type ramifies at a characteristic depth in the retina and makes a stereotyped set of synaptic connections. In other words, these neurons form a series of local circuits across the retina. The next step is to identify the simplest and commonest of these repeating neural circuits. They are the building blocks of retinal function. If we think of it in this way, the retina is a fabulous model for the rest of the CNS. We are interested in identifying specific circuits and cell types that support the different functions of the retina. For example, there appear to be specific pathways for rod and cone mediated vision. Rods are used under low light conditions and rod circuitry is specialized for high sensitivity when photons are scarce (when you’re out camping, starlight). The hallmark of the rod-mediated system is monochromatic vision. In contrast, the cone circuits are specialized for high acuity and color vision under relatively bright or daylight conditions. Individual neurons may be filled with fluorescent dyes under visual control. This is achieved by impaling the cell with a glass microelectrode using a 3D micromanipulator. We are also interested in the diffusion of dye through coupled neuronal networks in the retina. The dye filled cells are also combined with antibody labeling to reveal neuronal connections and circuits. This triple-labeled material may be viewed and reconstructed in 3 dimensions by multi-channel confocal microscopy. We have our own confocal microscope facility in the department and timeslots are available to students in my lab.
Advancements in multielectrode recording techniques in neurophysiology: from wire probes to neuropixels
Join us for a comprehensive introduction to multielectrode recording technologies for in vivo neurophysiology. Whether you are new to the field or have experience with one type of technology, this webinar will provide you with information about a variety of technologies, with a main focus on Neuropixels probes. Dr Kris Schoepfer, US Product Specialist at Scientifica, will provide an overview of multielectrode technologies available to record from one or more brain areas simultaneously, including: DIY multielectrode probes; Tetrodes / Hyperdrives; Silicon probes; Neuropixels. Dr Sylvia Schröder, University of Sussex, will delve deeper into the advantages of Neuropixels, highlighting the value of channel depth and the types of new biological insights that can be explored thanks to the advancements this technology brings. Presenting exciting data from the optic tract and superior colliculus, Sylvia will also discuss how Neuropixels recordings can be combined with optogenetics, and how histology can be used to identify the location of probes.
Analogies in motor learning - acquisition and refinement of movement skills
Analogies are widely used by teachers and coaches of different movement disciplines, serving a role during the learning phase of a new skill, and honing one’s performance to a competitive level. In previous studies, analogies improved motor control in various tasks and across age groups. Our study aimed to evaluate the efficacy of analogies throughout the learning process, using kinematic measures for an in-depth analysis. We tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. The experiment included a drawing task, in which subjects were asked to connect four dots into a closed shape, and a mirror game, in which subjects tracked an oval that moved across the screen. After establishing a baseline, subjects were given an analogy, explicit instructions, or no further instruction. We compared their improvement in overall skill, accuracy, and speed. Subjects in the analogy and explicit groups improved their performance in the drawing task, while significant differences were found in the mirror game only for slow movements between analogy and controls. In conclusion, analogies are an important tool for teachers and coaches, and more research is needed to understand how to apply them for maximum results. They can rapidly change motor control and strategy but may also affect only some aspects of a movement and not others. Careful thought is needed to construct an effective analogy that encompasses relevant movement facets, as well as the practitioner’s personal background and experience.
Learning to perceive with new sensory signals
I will begin by describing recent research taking a new, model-based approach to perceptual development. This approach uncovers fundamental changes in information processing underlying the protracted development of perception, action, and decision-making in childhood. For example, integration of multiple sensory estimates via reliability-weighted averaging – widely used by adults to improve perception – is often not seen until surprisingly late into childhood, as assessed by both behaviour and neural representations. This approach forms the basis for a newer question: the scope for the nervous system to deploy useful computations (e.g. reliability-weighted averaging) to optimise perception and action using newly-learned sensory signals provided by technology. Our initial model system is augmenting visual depth perception with devices translating distance into auditory or vibro-tactile signals. This problem has immediate applications to people with partial vision loss, but the broader question concerns our scope to use technology to tune in to any signal not available to our native biological receptors. I will describe initial progress on this problem, and our approach to operationalising what it might mean to adopt a new signal comparably to a native sense. This will include testing for its integration (weighted averaging) alongside the native senses, assessing the level at which this integration happens in the brain, and measuring the degree of ‘automaticity’ with which new signals are used, compared with native perception.
Computational psychophysics at the intersection of theory, data and models
Behavioural measurements are often overlooked by computational neuroscientists, who prefer to focus on electrophysiological recordings or neuroimaging data. This attitude is largely due to perceived lack of depth/richness in relation to behavioural datasets. I will show how contemporary psychophysics can deliver extremely rich and highly constraining datasets that naturally interface with computational modelling. More specifically, I will demonstrate how psychophysics can be used to guide/constrain/refine computational models, and how models can be exploited to design/motivate/interpret psychophysical experiments. Examples will span a wide range of topics (from feature detection to natural scene understanding) and methodologies (from cascade models to deep learning architectures).
Stability-Flexibility Dilemma in Cognitive Control: A Dynamical System Perspective
Constraints on control-dependent processing have become a fundamental concept in general theories of cognition that explain human behavior in terms of rational adaptations to these constraints. However, theories miss a rationale for why such constraints would exist in the first place. Recent work suggests that constraints on the allocation of control facilitate flexible task switching at the expense of the stability needed to support goal-directed behavior in face of distraction. We formulate this problem in a dynamical system, in which control signals are represented as attractors and in which constraints on control allocation limit the depth of these attractors. We derive formal expressions of the stability-flexibility tradeoff, showing that constraints on control allocation improve cognitive flexibility but impair cognitive stability. We provide evidence that human participants adapt higher constraints on the allocation of control as the demand for flexibility increases but that participants deviate from optimal constraints. In continuing work, we are investigating how collaborative performance of a group of individuals can benefit from individual differences defined in terms of balance between cognitive stability and flexibility.
What to consider, when making strategic social decisions? An Eye-tracking investigation
In many societal problems, individuals exhibit a conflict between keeping resources (e.g., money, time or attention) to themselves or sharing them with another individual or group. The reasons motivating decisions in favor of others welfare can thereby vary from purely altruistic to completely strategic. Be it the stranger making an effort returning a lost valet to its rightful owner or a co-worker pitching in her fair share in a joint project. Actions like that create an environment that makes living together a pleasant experience. Hence, understanding how decisions determining the welfare of oneself and others are made is important for facilitating this behavior by building institutions that maximize the rate of cooperation in a society. To shed new light on such decision making processes I will present recent evidence from a set of process tracing experiments utilizing eye-tracking and economic games. Experiments will focus on the role of social preferences in the choice construction process and will identify mechanisms (i.e., search and processing depth, information weighting, and ignorance) through which they guide choice behavior. I will in particular focus on the differences and commonalitiesbetween strategic and altruistic decisions. Specifically, investigating to which extent people direct attention towards certain components of the decision situation in a context-dependent manner.
The Logic of Depth Cue Combination for Multimodal 3D Perception
Meningeal lymphatics and peripheral immunity in brain function and dysfunction
Immune cells and their derived molecules have major impact on brain function. Mice deficient in adaptive immunity have impaired cognitive and social function compared to that of wild-type mice. Importantly, replenishment of the T cell compartment in immune deficient mice restored proper brain function. Despite the robust influence on brain function, T cells are not found within the brain parenchyma, a fact that only adds more mystery into these enigmatic interactions between T cells and the brain. Our results suggest that meningeal space, surrounding the brain, is the site where CNS-associated immune activity takes place. We have recently discovered a presence of meningeal lymphatic vessels that drain CNS molecules and immune cells to the deep cervical lymph nodes. This communication between the CNS and the peripheral immunity is playing a key role in neurophysiology and in several CNS disorders. Interestingly, meningeal lymphatics are impaired in aging and their dysfunction may be related to age-related cognitive decline as well as to Alzheimer’s pathology. In addition to providing new insights into age-related disorders, meningeal lymphatics may also serve as a novel therapeutic target for these diseases and are worth of in-depth mechanistic exploration.
Super-Recognizers: facts, fallacies, and the future
Over the past decade, the domain of face identity processing has seen a surging interest in inter-individual differences, with a focus on individuals with superior skills, so-called Super-Recognizers (SRs; Ramon et al., 2019; Russell et al., 2009). Their study can provide valuable insights into brain-behavior relationships and advance our understanding of neural functioning. Despite a decade of research, and similarly to the field of developmental prosopagnosia, a consensus on diagnostic criteria for SR identification is lacking. Consequently, SRs are currently identified either inconsistently, via suboptimal individual tests, or via undocumented collections of tests. This state of the field has two major implications. Firstly, our scientific understanding of SRs will remain at best limited. Secondly, the needs of government agencies interested in deploying SRs for real-life identity verification (e.g., policing) are unlikely to be met. To counteract these issues, I suggest the following action points. Firstly, based on our and others’ work suggesting novel and challenging tests of face cognition (Bobak et al., 2019; Fysh et al., in press; Stacchi et al., 2019), and my collaborations with international security agencies, I recommend novel diagnostic criteria for SR identification. These are currently being used to screen the Berlin State Police’s >25K employees before identifying SRs via bespoke testing procedures we have collaboratively developed over the past years. Secondly, I introduce a cohort of SRs identified using these criteria, which is being studied in-depth using behavioral methods, psychophysics, eye-tracking, and neuroimaging. Finally, I suggest data acquired for these individuals should be curated to develop and share best practices with researchers and practitioners, and to gain an accurate and transparent description of SR cases to exploit their informative value.
African Neuroscience: Current Status and Prospects
Understanding the function and dysfunction of the brain remains one of the key challenges of our time. However, an overwhelming majority of brain research is carried out in the Global North, by a minority of well-funded and intimately interconnected labs. In contrast, with an estimated one neuroscientist per million people in Africa, news about neuroscience research from the Global South remains sparse. Clearly, devising new policies to boost Africa’s neuroscience landscape is imperative. However, the policy must be based on accurate data, which is largely lacking. Such data must reflect the extreme heterogeneity of research outputs across the continent’s 54 countries. We have analysed all of Africa’s Neuroscience output over the past 21 years and uniquely verified the work performed in African laboratories. Our unique dataset allows us to gain accurate and in-depth information on the current state of African Neuroscience research, and to put it into a global context. The key findings from this work and recommendations on how African research might best be supported in the future will be discussed.
OpenEyeSim 2.1: Rendering Depth-of-Field and Chromatic Aberration Faster than Real-Time Simulations of Visual Accommodation
Bernstein Conference 2024
Hippocampal Neocortical Coupling Varies as a Function of Depth of NREM Sleep
COSYNE 2022
Hippocampal Neocortical Coupling Varies as a Function of Depth of NREM Sleep
COSYNE 2022
The timescale and magnitude of 1/f aperiodic activity decrease with cortical depth in humans, macaques, and mice
COSYNE 2022
The timescale and magnitude of 1/f aperiodic activity decrease with cortical depth in humans, macaques, and mice
COSYNE 2022
Hippocampal Neocortical Coupling Varies as a Function of Depth of NREM Sleep
COSYNE 2023
Variable syllable context depth in Bengalese finch songs: A Bayesian sequence model
COSYNE 2023
Decoding Object Depth from the Macaque IT Cortex: Temporal Dynamics and Insights for ANN Models
COSYNE 2025
Inhibitory cell-type-specific properties and transformations set up a unique depth-dependent temporal integration scheme in the human neocortical circuit
COSYNE 2025
Traveling waves modulate neural excitability along the depth of macaque visual cortex
COSYNE 2025
An in-depth investigation of motor and non-motor symptoms using diffusion tensor imaging (DTI) measures in Parkinson's disease (PD) patients: A PPMI data analysis
FENS Forum 2024
Three-photon in vivo imaging of neurons and glia in the medial prefrontal cortex at unprecedented depth with sub-cellular resolution
FENS Forum 2024
depth coverage
40 items