TopicNeuro

developmental

50 Seminars40 ePosters

Latest

SeminarNeuroscience

Developmental emergence of personality

Bassem Hassan
Paris Brain Institute, ICM, France
Dec 10, 2025

The Nature versus Nurture debate has generally been considered from the lens of genome versus experience dichotomy and has dominated our thinking about behavioral individuality and personality traits. In contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using the Drosophila melanogaster visual system, I will discuss our efforts to dissect how individuality in circuit wiring emerges during development, and how that helps generate individual behavioral variation.

SeminarNeuroscience

Cellular Crosstalk in Brain Development, Evolution and Disease

Silvia Cappello
Molecular Physiology of Neurogenesis at the Ludwig Maximilian University of Munich
Oct 2, 2025

Cellular crosstalk is an essential process during brain development and is influenced by numerous factors, including cell morphology, adhesion, the local extracellular matrix and secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the proper development of the human brain. Therefore, we combine 2D and 3D in vitro human models to better understand the molecular and cellular mechanisms involved in progenitor proliferation and fate, migration and maturation of excitatory and inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
Jul 9, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
May 14, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscience

Gene regulatory mechanisms of neocortex development and evolution

Mareike Albert
Center for Regenerative Therapies, Dresden University of Technology, Germany
Dec 12, 2024

The neocortex is considered to be the seat of higher cognitive functions in humans. During its evolution, most notably in humans, the neocortex has undergone considerable expansion, which is reflected by an increase in the number of neurons. Neocortical neurons are generated during development by neural stem and progenitor cells. Epigenetic mechanisms play a pivotal role in orchestrating the behaviour of stem cells during development. We are interested in the mechanisms that regulate gene expression in neural stem cells, which have implications for our understanding of neocortex development and evolution, neural stem cell regulation and neurodevelopmental disorders.

SeminarNeuroscience

Screen Savers : Protecting adolescent mental health in a digital world

Amy Orben
University of Cambridge UK
Dec 3, 2024

In our rapidly evolving digital world, there is increasing concern about the impact of digital technologies and social media on the mental health of young people. Policymakers and the public are nervous. Psychologists are facing mounting pressures to deliver evidence that can inform policies and practices to safeguard both young people and society at large. However, research progress is slow while technological change is accelerating.My talk will reflect on this, both as a question of psychological science and metascience. Digital companies have designed highly popular environments that differ in important ways from traditional offline spaces. By revisiting the foundations of psychology (e.g. development and cognition) and considering digital changes' impact on theories and findings, we gain deeper insights into questions such as the following. (1) How do digital environments exacerbate developmental vulnerabilities that predispose young people to mental health conditions? (2) How do digital designs interact with cognitive and learning processes, formalised through computational approaches such as reinforcement learning or Bayesian modelling?However, we also need to face deeper questions about what it means to do science about new technologies and the challenge of keeping pace with technological advancements. Therefore, I discuss the concept of ‘fast science’, where, during crises, scientists might lower their standards of evidence to come to conclusions quicker. Might psychologists want to take this approach in the face of technological change and looming concerns? The talk concludes with a discussion of such strategies for 21st-century psychology research in the era of digitalization.

SeminarNeuroscience

Virtual and experimental approaches to the pathogenicity of SynGAP1 missense mutations

Michael Courtney & Pekka Postila
University of Turku
Nov 21, 2024
SeminarNeuroscience

Targeting gamma oscillations to improve cognition

Vikaas Sohal, MD, PhD
UCSF
Oct 30, 2024
SeminarNeuroscience

SYNGAP1 Natural History Study/ Multidisciplinary Clinic at Children’s Hospital Colorado

Megan Abbott, MD
Children's Hospital Colorado
Jul 17, 2024
SeminarNeuroscience

Beyond the synapse: SYNGAP1 in primary and motile cilia

Helen Willsey, PhD
University of California San Francisco
May 25, 2024
SeminarNeuroscience

The multi-phase plasticity supporting winner effect

Dayu Lin
NYU Neuroscience Institute, New York, USA
May 15, 2024

Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.

SeminarNeuroscienceRecording

The Roles of Distinct Functions of SynGAP1 in SYNGAP1-Related Disorders

Richard Huganir
Johns Hopkins Medicine
May 15, 2024
SeminarNeuroscience

Modeling human brain development and disease: the role of primary cilia

Kyrousi Christina
Medical School, National and Kapodistrian University of Athens, Athens, Greece
Apr 24, 2024

Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.

SeminarNeuroscience

Contrasting developmental principles of human brain development and their relevance to neurodevelopmental disorders

Tom Nowakowski
University of California, San Francisco
Apr 17, 2024
SeminarNeuroscience

Cortical interneurons from brain development to disease

Denaxa Myrto
Biomedical Sciences Reaserch Center "Alexander Fleming", Athens, Greece
Mar 13, 2024
SeminarNeuroscience

Divergent Recruitment of Developmentally-Defined Neuronal Ensembles Supports Memory Dynamics

Flavio Donato
Biozentrum of the University of Basel, Basel, Switzerland
Nov 23, 2023
SeminarNeuroscience

Metabolic Remodelling in the Developing Forebrain in Health and Disease

Gaia Novarino
Institute of Science and Technology Austria
Oct 31, 2023

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Motivated by the identification of autism-associated mutations in SLC7A5, a transporter for metabolically essential large neutral amino acids (LNAAs), we utilized metabolomic profiling to investigate the metabolic states of the cerebral cortex across various developmental stages. Our findings reveal significant metabolic restructuring occurring in the forebrain throughout development, with specific groups of metabolites exhibiting stage-specific changes. Through the manipulation of Slc7a5 expression in neural cells, we discovered an interconnected relationship between the metabolism of LNAAs and lipids within the cortex. Neuronal deletion of Slc7a5 influences the postnatal metabolic state, resulting in a shift in lipid metabolism and a cell-type-specific modification in neuronal activity patterns. This ultimately gives rise to enduring circuit dysfunction.

SeminarNeuroscience

The role of CNS microglia in health and disease

Kyrargyri Vassiliki
Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
Oct 25, 2023

Microglia are the resident CNS macrophages of the brain parenchyma. They have many and opposing roles in health and disease, ranging from inflammatory to anti-inflammatory and protective functions, depending on the developmental stage and the disease context. In Multiple Sclerosis, microglia are involved to important hallmarks of the disease, such as inflammation, demyelination, axonal damage and remyelination, however the exact mechanisms controlling their transformation towards a protective or devastating phenotype during the disease progression remains largely unknown until now. We wish to understand how brain microglia respond to demyelinating insults and how their behaviour changes in recovery. To do so we developed a novel histopathological analysis approach in 3D and a cell-based analysis tool that when applied in the cuprizone model of demyelination revealed region- and disease- dependent changes in microglial dynamics in the brain grey matter during demyelination and remyelination. We now use similar approaches with the aim to unravel sensitive changes in microglial dynamics during neuroinflammation in the EAE model. Furthermore, we employ constitutive knockout and tamoxifen-inducible gene-targeting approaches, immunological techniques, genetics and bioinformatics and currently seek to clarify the specific role of the brain resident microglial NF-κB molecular pathway versus other tissue macrophages in EAE.

SeminarNeuroscience

Cellular crosstalk in Neurodevelopmental Disorders

Silvia Cappello
Max Planck Institute
Sep 27, 2023

Cellular crosstalk is an essential process during brain development and it is influenced by numerous factors, including the morphology of the cells, their adhesion molecules, the local extracellular matrix and the secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the correct development of the human brain. Hence, we combine the in vivo mouse model and the in vitro human-derived neurons, cerebral organoids, and dorso-ventral assembloids in order to better comprehend the molecular and cellular mechanisms involved in ventral progenitors’ proliferation and fate as well as migration and maturation of inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders. We particularly focus on mutations in genes influencing cell-cell contacts, extracellular matrix, and secretion of vesicles and therefore study intrinsic and extrinsic mechanisms contributing to the formation of the brain. Our data reveal an important contribution of cell non-autonomous mechanisms in the development of neurodevelopmental disorders.

SeminarNeuroscienceRecording

Vision Unveiled: Understanding Face Perception in Children Treated for Congenital Blindness

Sharon Gilad-Gutnick
MIT
Jun 20, 2023

Despite her still poor visual acuity and minimal visual experience, a 2-3 month old baby will reliably respond to facial expressions, smiling back at her caretaker or older sibling. But what if that same baby had been deprived of her early visual experience? Will she be able to appropriately respond to seemingly mundane interactions, such as a peer’s facial expression, if she begins seeing at the age of 10? My work is part of Project Prakash, a dual humanitarian/scientific mission to identify and treat curably blind children in India and then study how their brain learns to make sense of the visual world when their visual journey begins late in life. In my talk, I will give a brief overview of Project Prakash, and present findings from one of my primary lines of research: plasticity of face perception with late sight onset. Specifically, I will discuss a mixed methods effort to probe and explain the differential windows of plasticity that we find across different aspects of distributed face recognition, from distinguishing a face from a nonface early in the developmental trajectory, to recognizing facial expressions, identifying individuals, and even identifying one’s own caretaker. I will draw connections between our empirical findings and our recent theoretical work hypothesizing that children with late sight onset may suffer persistent face identification difficulties because of the unusual acuity progression they experience relative to typically developing infants. Finally, time permitting, I will point to potential implications of our findings in supporting newly-sighted children as they transition back into society and school, given that their needs and possibilities significantly change upon the introduction of vision into their lives.

SeminarNeuroscience

Movement planning as a window into hierarchical motor control

Katja Kornysheva
Centre for Human Brain (CHBH) at the University of Birmingham, UK
Jun 15, 2023

The ability to organise one's body for action without having to think about it is taken for granted, whether it is handwriting, typing on a smartphone or computer keyboard, tying a shoelace or playing the piano. When compromised, e.g. in stroke, neurodegenerative and developmental disorders, the individuals’ study, work and day-to-day living are impacted with high societal costs. Until recently, indirect methods such as invasive recordings in animal models, computer simulations, and behavioural markers during sequence execution have been used to study covert motor sequence planning in humans. In this talk, I will demonstrate how multivariate pattern analyses of non-invasive neurophysiological recordings (MEG/EEG), fMRI, and muscular recordings, combined with a new behavioural paradigm, can help us investigate the structure and dynamics of motor sequence control before and after movement execution. Across paradigms, participants learned to retrieve and produce sequences of finger presses from long-term memory. Our findings suggest that sequence planning involves parallel pre-ordering of serial elements of the upcoming sequence, rather than a preparation of a serial trajectory of activation states. Additionally, we observed that the human neocortex automatically reorganizes the order and timing of well-trained movement sequences retrieved from memory into lower and higher-level representations on a trial-by-trial basis. This echoes behavioural transfer across task contexts and flexibility in the final hundreds of milliseconds before movement execution. These findings strongly support a hierarchical and dynamic model of skilled sequence control across the peri-movement phase, which may have implications for clinical interventions.

SeminarNeuroscience

Quantifying perturbed SynGAP1 function caused by coding mutations

Michael Courtney, PhD
Turku Bioscience
Jun 15, 2023
SeminarNeuroscience

Therapeutic Strategies for Autism: Targeting Three Levels of the Central Dogma of Molecular Biology with a Focus on SYNGAP1

Prof. Lilia Iakoucheva, PhD & Mr. Derek Hong, MS
UCSD School of Medicine
Jun 8, 2023
SeminarNeuroscience

Mechanisms Underlying the Persistence of Cancer-Related Fatigue

Elisabeth G. Vichaya
Baylor University
May 23, 2023

Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.

SeminarNeuroscience

Involvement of the brain endothelium in neurodevelopmental disorders

Baptiste Lacoste, PhD
University of Ottawa
May 18, 2023
SeminarNeuroscience

Circuit mechanisms of attention dysfunction in Scn8a+/- mice: implications for epilepsy and neurodevelopmental disorders

Brielle Ferguson
Harvard Medical School
May 17, 2023
SeminarNeuroscience

Microbial modulation of zebrafish behavior and brain development

Judith S. Eisen
University of Oregon
May 16, 2023

There is growing recognition that host-associated microbiotas modulate intrinsic neurodevelopmental programs including those underlying human social behavior. Despite this awareness, the fundamental processes are generally not understood. We discovered that the zebrafish microbiota is necessary for normal social behavior. By examining neuronal correlates of behavior, we found that the microbiota restrains neurite complexity and targeting of key forebrain neurons within the social behavior circuitry. The microbiota is also necessary for both localization and molecular functions of forebrain microglia, brain-resident phagocytes that remodel neuronal arbors. In particular, the microbiota promotes expression of complement signaling pathway components important for synapse remodeling. Our work provides evidence that the microbiota modulates zebrafish social behavior by stimulating microglial remodeling of forebrain circuits during early neurodevelopment and suggests molecular pathways for therapeutic interventions during atypical neurodevelopment.

SeminarNeuroscience

The balanced brain: two-photon microscopy of inhibitory synapse formation

Corette Wierenga
Donders Institute
May 11, 2023

Coordination between excitatory and inhibitory synapses (providing positive and negative signals respectively) is required to ensure proper information processing in the brain. Many brain disorders, especially neurodevelopental disorders, are rooted in a specific disturbance of this coordination. In my research group we use a combination of two-photon microscopy and electrophisiology to examine how inhibitory synapses are fromed and how this formation is coordinated with nearby excitatroy synapses.

SeminarNeuroscience

Catatonia in Neurodevelopmental Conditions

Joshua Ryan Smith
Vanderbilt University Medical Center
May 11, 2023
SeminarNeuroscience

Why are we consistently inconsistent? On the neural mechanisms of behavioural inconsistency

Tobias Hauser
Developmental Computational Psychiatry Lab, University of Tübingen
May 4, 2023
SeminarNeuroscience

Epigenetic rewiring in Schinzel-Giedion syndrome

Alessandro Sessa, PhD
San Raffaele Scientific Institute, Milan (Italy), Stem Cell & Neurogenesis Unit
May 3, 2023

During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.

SeminarNeuroscience

Precision Genomics in Neurodevelopmental Disorders

Tychele Turner
Washington University
May 3, 2023
SeminarNeuroscience

A Data-Driven Approach to Reconstructing Disease Trajectories in SYNGAP1-Related Disorders

Jillian McKee, MD, PhD
UPENN
Apr 27, 2023
SeminarNeuroscienceRecording

Nature over Nurture: Functional neuronal circuits emerge in the absence of developmental activity

Dániel L. Barabási
Engert lab, MCB Harvard University
Apr 5, 2023

During development, the complex neuronal circuitry of the brain arises from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that neuronal activity plays a critical role in shaping circuits for behavior. Current AI technologies are modeled after the same principle: connections in an initial weight matrix are pruned and strengthened by activity-dependent signals until the network can sufficiently generalize a set of inputs into outputs. Here, we challenge these learning-dominated assumptions by quantifying the contribution of neuronal activity to the development of visually guided swimming behavior in larval zebrafish. Intriguingly, dark-rearing zebrafish revealed that visual experience has no effect on the emergence of the optomotor response (OMR). We then raised animals under conditions where neuronal activity was pharmacologically silenced from organogenesis onward using the sodium-channel blocker tricaine. Strikingly, after washout of the anesthetic, animals performed swim bouts and responded to visual stimuli with 75% accuracy in the OMR paradigm. After shorter periods of silenced activity OMR performance stayed above 90% accuracy, calling into question the importance and impact of classical critical periods for visual development. Detailed quantification of the emergence of functional circuit properties by brain-wide imaging experiments confirmed that neuronal circuits came ‘online’ fully tuned and without the requirement for activity-dependent plasticity. Thus, contrary to what you learned on your mother's knee, complex sensory guided behaviors can be wired up innately by activity-independent developmental mechanisms.

SeminarNeuroscienceRecording

Developmentally structured coactivity in the hippocampal trisynaptic loop

Roman Huszár
Buzsáki Lab, New York University
Apr 5, 2023

The hippocampus is a key player in learning and memory. Research into this brain structure has long emphasized its plasticity and flexibility, though recent reports have come to appreciate its remarkably stable firing patterns. How novel information incorporates itself into networks that maintain their ongoing dynamics remains an open question, largely due to a lack of experimental access points into network stability. Development may provide one such access point. To explore this hypothesis, we birthdated CA1 pyramidal neurons using in-utero electroporation and examined their functional features in freely moving, adult mice. We show that CA1 pyramidal neurons of the same embryonic birthdate exhibit prominent cofiring across different brain states, including behavior in the form of overlapping place fields. Spatial representations remapped across different environments in a manner that preserves the biased correlation patterns between same birthdate neurons. These features of CA1 activity could partially be explained by structured connectivity between pyramidal cells and local interneurons. These observations suggest the existence of developmentally installed circuit motifs that impose powerful constraints on the statistics of hippocampal output.

SeminarNeuroscience

Harnessing mRNA metabolism for the development of precision gene therapy

Jeff Coller, PhD
Johns Hopkins Medicine
Mar 16, 2023
SeminarNeuroscience

Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development

Jennifer Erwin, Ph.D
Lieber Institute for Brain Development; Department of Neurology and Neuroscience; Johns Hopkins University School of Medicine
Mar 15, 2023

Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).

SeminarNeuroscience

Linking SYNGAP1 with Human-Specific Mechanisms of Neuronal Development

Pierre Vanderhaeghen, MD, PhD
VIB Center for Brain & Disease Research
Mar 9, 2023
SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Feb 16, 2023

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscience

SYNGAP1 and Epilepsy SurgerySYNGAP1 and Epilepsy Surgery

Taylor Abel, MD and Monika Jones, JD
Pediatric Epilepsy Surgery Program at UPMC Children’s Hospital of Pittsburgh/Pediatric Epilepsy Surgery Alliance
Feb 16, 2023
SeminarNeuroscience

Cell-type specific alterations underpinning convergent ASD phenotypes in PACS1 neurodevelopmental disorder

Alicia Guemez-Gamboa
Northwestern University Feinberg School of Medicine
Feb 8, 2023
SeminarNeuroscienceRecording

Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being

Micole Spitale
Department of Computer Science and Technology, University of Cambridge
Feb 7, 2023

Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.

SeminarNeuroscienceRecording

Developmental disorders of presynaptic vesicle cycling - Synaptotagmin-1 and beyond

Kate Baker
MRC Cognition and Brain Sciences Unit, University of Cambridge
Nov 23, 2022

Post-diagnostic research on rare genetic developmental disorders presents new opportunities (and a few challenges) for discovery neuroscience and translation. In this talk, Kate will describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence pre-synaptic vesicle cycling (SVC disorders). She will focus on Synaptotagmin-1 Associated Neurodevelopmental Disorder (also known as Baker Gordon Syndrome), first described in 2015 and now diagnosed in more than 50 children and young people worldwide. She will then present work-in-progress by her group on the neurodevelopmental spectrum of SVC disorders more broadly, and discuss opportunities for collaborative neuroscience which can bridge the gaps between genetic cause and complex neurological, cognitive and mental health outcomes.

SeminarNeuroscience

Baby steps to breakthroughs in precision health in neurodevelopmental disorders

Shafali Spurling Jeste
Children's Hospital Los Angeles
Oct 26, 2022
SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Oct 19, 2022

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscienceRecording

Targeting alternative splicing of SYNGAP1 using antisense oligonucleotides

Benjamin Prosser
University of Pennsylvania Perelman School of Medicine, PhD
Sep 29, 2022
ePosterNeuroscience

Developmental experience of scarcity affects adult responses to negative outcomes and uncertainty

Wan Chen Lin,Christine Liu,Polina Kosillo,Lung-Hao Tai,Ezequiel Galarce,Helen Bateup,Stephan Lammel,Linda Wilbrecht

COSYNE 2022

ePosterNeuroscience

Alignment of ANN Language Models with Humans After a Developmentally Realistic Amount of Training

Eghbal Hosseini, Martin Schrimpf, Yian Zhang, Samuel Bowman, Noga Zaslavsky, Evelina Fedorenko

COSYNE 2023

ePosterNeuroscience

Complex computation from developmental priors

Dániel Barabási, Taliesin Beynon, Nicolas Perez-Nievas, Ádám Katona

COSYNE 2023

ePosterNeuroscience

Developmentally structured coactivity and plasticity in the hippocampal trisynaptic loop

Roman Huszar, Dhananjay Huilgol, Jiaxi Liu, Josh Huang, György Buzsáki

COSYNE 2023

ePosterNeuroscience

Adenosine and astrocytes determine the developmental dynamics of spike timing-dependent plasticity in the somatosensory cortex

Irene Martinez-Gallego, Mikel Pérez-Rodríguez, Heriberto Coatl-Cuaya, Antonio Rodriguez-Moreno

FENS Forum 2024

ePosterNeuroscience

Adult cortical and hippocampal network dynamics in p.A263V Scn2a mouse model of developmental and epileptic encephalopathy

Yana Reva, Katharina Ulrich, Hanna Oelßner, Birgit Engeland, Ricardo Melo Neves, Stephan Marguet, Dirk Isbrandt

FENS Forum 2024

ePosterNeuroscience

The asymmetric brain: Utilizing hyper-gravity to manipulate developmental symmetries

Felix Graf, Robin Hiesinger

FENS Forum 2024

ePosterNeuroscience

Is bigger always more? – Investigating developmental changes in non-symbolic number comparison

Judit Pekar, Annette Kinder

FENS Forum 2024

ePosterNeuroscience

Central role of the habenulo-interpeduncular system in the neurodevelopmental basis of susceptibility and resilience to anxiety

Fabien D'Autréaux, Malalaniaina Rakotobe, Niels Fjerdingstad, Nuria Ruiz Reig, Thomas Lamonerie

FENS Forum 2024

ePosterNeuroscience

Cerebellar alteration in a mouse model of GRIN2D-related developmental and epileptic encephalopathies

Mor Yam, Danielle Galber, Wayne N. Frankel, Karen B. Avraham, Moran Rubinstein

FENS Forum 2024

ePosterNeuroscience

Characterization of a novel mouse model for CHD2-related neurodevelopmental disorder

Anat Mavashov Arzuan, Shaked Turk, Marina Brusel, Shir Quinn, Yael Sarusi, Igor Ulitsky, Moran Rubinstein

FENS Forum 2024

ePosterNeuroscience

Characterization of the pathophysiological mechanisms of KCNQ2-developmental and epileptic encephalopathy (KCNQ2-DEE) in the KV7.2Thr274Met/+ mouse model

Shaimaa Haiba, Kilian Lüdicke, Laurent Villard, Maurizio Taglialatela, Carmine Ostacolo, Holger Lerche, Thomas V. Wuttke

FENS Forum 2024

ePosterNeuroscience

Characterizing human-derived neuronal network using high-density MEAs and proteomics: In-vitro model for neurodevelopmental disease

Lorenzo Muzzi, Ilaria Musante, Simona Baldassari, Martina Bortolucci, Niccolò Callegari, Andrea Petretto, Federico Zara, Paolo Scudieri

FENS Forum 2024

ePosterNeuroscience

Chronic exposure to glucocorticoids during critical neurodevelopmental periods leads to lasting shifts in neuronal type distribution and overall brain architecture

Ilknur Safak Demirel, Pia Giraudet, Malgorzata Grochowicz, Anthi C. Krontira, Leander Dony, Tim Schäfer, Elisabeth Binder, Cristiana Cruceanu

FENS Forum 2024

ePosterNeuroscience

Chronodisruption during early developmental stages affects clock in the SCN in a sex-dependent manner via melatonin-independent signaling pathways

Kateryna Semenovykh, Petra Honzlová, Dmytro Semenovykh, Tereza Dočkal, Martin Sládek, Pavel Houdek, Philipp Greiner, Alena Sumová

FENS Forum 2024

ePosterNeuroscience

Clinical features of SYT1-associated neurodevelopmental disorder correlate with functional defects in evoked neurotransmitter release

Lauren Bleakley, Paul Park, Nadia Saraya, Reem Al-Jawahiri, Josefine Eck, Marc Aloi, Holly Melland, Kate Baker, Sarah Gordon

FENS Forum 2024

ePosterNeuroscience

Combined bulk transcriptomics reveals a neurodevelopmental signature in the Alzheimer’s disease postmortem brain

Giovanna Carello-Collar, Marco A. De Bastiani, João Pedro Ferrari-Souza, Christian Limberger, Alexandre Santos Cristino, Diogo O. Souza, Eduardo R. Zimmer

FENS Forum 2024

ePosterNeuroscience

Cracking the code: How early brain asymmetry foretells neurodevelopmental futures

Patric Kienast, Marlene Stuempflen, Athena Taymourtash, Georg Langs, Daniela Prayer, Gregor Kasprian

FENS Forum 2024

ePosterNeuroscience

Critical fear: Developmental trajectories of traumatic life experiences during specific sensitive periods

Greta Visintin, Giovanni Morelli, Mohit Rastogi, Elisa Gelli, Angelo Serani, Alexia Stuefer, Martina Bartolucci, Ilaria Colombi, Matteo Falappa, Andrea Petretto, Alessandro Gozzi, Valter Tucci, Laura Cancedda

FENS Forum 2024

ePosterNeuroscience

Deciphering developmental-aging mechanisms in cell culture: Aberrant ADNP cytoplasmic-nuclear crosstalk and NAP (davunetide) protection

Maram Ganaiem, Nina D. Gildor, Shula Shazman, Gidon Karmon, Yanina Ivashko-Pachima, Illana Gozes

FENS Forum 2024

ePosterNeuroscience

Deciphering the neurodevelopmental role of the brain secretome in Autism Spectrum Disorder

Simon Schnabl, Romina Antonela Gisonno, Gaia Novarino

FENS Forum 2024

ePosterNeuroscience

Decoding the developmental vulnerability to psychiatric disorders: Investigating the sexual dimorphism and role of perineuronal nets in habenulo-interpeduncular-system-mediated susceptibility to anxiety

Niels Fjerdingstad, Malalaniaina Rakotobe, Adrien Chopin, Thomas Lamonerie, Fabien D'AUTREAUX

FENS Forum 2024

ePosterNeuroscience

Decreased synaptic GABAergic inhibition in the dentate gyrus of a mouse model of the neurodevelopmental disorder BBSOAS

Eleonora Dallorto, Sara Bonzano, Enis Hidisoglu, Andrea Marcantoni, Marco Sassoè-Pognetto, Michèle Studer, Silvia De Marchis

FENS Forum 2024

ePosterNeuroscience

Developmental alteration of social behavior in rat model of autism

Khatuna Rusadze, Manana Dashniani, Nino Chkhikvishvili, Mariam Chighladze

FENS Forum 2024

ePosterNeuroscience

Developmental alteration of astrocytic Ca2+ signaling mediated by metabotropic glutamate receptors in the olfactory bulb

Fatemeh Mohammadpour, Antonia Beiersdorfer, Charlotte Schubert, Daniela Hirnet, Manuel Friese, Christian Lohr

FENS Forum 2024

ePosterNeuroscience

Developmental Cajal-Retzius cell death contributes to the maturation of cortical inhibition and somatosensory processing

Angeliki Damilou, Linbi Cai, Ali Ozgur Argunsah, Shuting Han, Olivia Hanley, Georgios Kanatouris, Maria Karatsoli, Lorenzo Gesuita, Sepp Kollmorgen, Fritjof Helmchen, Theofanis Karayannis

FENS Forum 2024

ePosterNeuroscience

Developmental differences in reward-learning and functional connectivity

Zsófia Karlócai, Johan Vegelius, Ebba Widegren, Johan Lundin Kleberg, Barry Karlsson, David Fällmar, Johanna Mårtensson, Karin Brocki, Nils Kroemer, Malin Gingnell, Andreas Frick

FENS Forum 2024

ePosterNeuroscience

Developmental delay in striatal synaptic pruning in lysosomal storage disorders

Mariagrazia Monaco, Cristina Somma, Alessandro Nicois, Maria de Risi, Luigia Cristino, Elvira de Leonibus

FENS Forum 2024

ePosterNeuroscience

Developmental cell death of interneurons and oligodendroglia is required for cognitive flexibility in mice

Cristobal Ibaceta, Hesni Khelfaoui, Maria Cecilia Angulo

FENS Forum 2024

ePosterNeuroscience

The developmental effects of repeated antenatal dexamethasone treatment on ADP-mediated and adenosinergic signaling system in the auditory brainstem of C57BL/6 mice

Dunja Dimitrijević, Irena Lavrnja, Marija Adžić-Bukvić, Milorad Dragić, Anđela Stekić, Katarina Mihajlović, Ivan Milenković, Danijela Laketa

FENS Forum 2024

ePosterNeuroscience

Developmental fine-tuning of medial superior olive neurons mitigates their predisposition to contralateral sound sources

Gerard Borst, Martijn Sierksma

FENS Forum 2024

ePosterNeuroscience

Developmental perturbation of dopamine pathways as a model for schizophrenia

Kanako Otomo, Marie Labouesse

FENS Forum 2024

ePosterNeuroscience

Developmental and temporal dynamics in cognitive control engagement during explicit learning

Hyeji Lee, Nicolas Chevalier

FENS Forum 2024

ePosterNeuroscience

Developmental trajectories of sleep EEG in neurodevelopmental disorders: Does sex matter?

Nataliia Kozhemiako, Shaun M. Purcell

FENS Forum 2024

ePosterNeuroscience

Dynamic cortical auditory-motor neuronal projections regulate developmental song learning in zebra finches

Joanna Komorowska-Müller, Shinobu Nomura, Yuichi Morohashi, Bernd Kuhn, Yoko Yazaki-Sugiyama

FENS Forum 2024

ePosterNeuroscience

Early life stress & the developmental dynamics of hypothalamic neurogenesis

Helen Eachus, Min-Kyeung Choi, Anna Tochwin, Johanna Kaspereit, May Ho, Soojin Ryu

FENS Forum 2024

ePosterNeuroscience

Early movement restriction affects the acquisition of neurodevelopmental reflexes in rat pups

Orlane Dupuis, Mélanie Van Gaever, Valérie Montel, Julie Dereumetz, Jacques Olivier Coq, Marie Hélène Canu, Erwan Dupont

FENS Forum 2024

ePosterNeuroscience

Functional characterization of DPYSL5 gene variants involved in neurodevelopmental disorders with brain malformations

Florence Desprez, Solène Remize, Aubin Moutal, Dévina C. Ung, Sylviane Marouillat, Roger Besançon, Jérôme Honnorat, Médéric Jeanne, Frédéric Laumonnier

FENS Forum 2024

ePosterNeuroscience

Heterozygosity for neurodevelopmental disorder-associated TRIO variants leads to distinct deficits in neuronal development and function

Yevheniia Ishchenko, Amanda T. Jeng, Shufang Feng, Timothy Nottoli, Melissa G. Carrizales, Matthew J. Vitarelli, Ellen Corcoran, Cindy Manriquez-Rodriguez, Khanh Nguyen, Charles A. Greer, Samuel A. Myers, Anthony J. Koleske

FENS Forum 2024

ePosterNeuroscience

Human iPSC-derived neurons to investigate subtype-specific alterations in neurodevelopmental disorders: Our progress on SSADH deficiency

Wardiya Afshar Saber, Nicole Teaney, Kellen Winden, Federico Gasparoli, J-B Roullet, Phillip Pearl, Mustafa Sahin

FENS Forum 2024

developmental coverage

90 items

Seminar50
ePoster40
Domain spotlight

Explore how developmental research is advancing inside Neuro.

Visit domain