experimental paradigms
Latest
Assessing consciousness in human infants
In a few months, human infants develop complex capacities in numerous cognitive domains. They learn their native language, recognize their parents, refine their numerical capacities and their perception of the world around them but are they conscious and how can we study consciousness when no verbal report is possible? One way to approach this question is to rely on the neural responses correlated with conscious perception in adults (i.e. a global increase of activity in notably frontal regions with top-down amplification of the sensory levels). We can thus study at what age the developing anatomical architecture might be mature enough to allow this type of responses, but moreover we can use similar experimental paradigms than in adults in which we expect to observe a similar pattern of functional responses.
Preschoolers' Comprehension of Functional Metaphors
Previous work suggests that children’s ability to understand metaphors emerges late in development. Researchers argue that children’s initial failure to understand metaphors is due to an inability to reason about shared relational structures between concepts. However, recent work demonstrates that preschoolers, toddlers, and even infants are already capable of relational reasoning. Might preschoolers also be capable of understanding metaphors, given more sensitive experimental paradigms? I explore whether preschoolers (N = 200, ages 4-5) understand functional metaphors, namely metaphors based on functional similarities. In Experiment 1a, preschoolers rated functional metaphors (e.g. “Roofs are hats”; “Clouds are sponges”) as “smarter” than nonsense statements. In Experiment 1b, adults (N = 48) also rated functional metaphors as “smarter” than nonsense statements (e.g. “Dogs are scissors”; “Boats are skirts”). In Experiment 2, preschoolers preferred functional explanations (e.g. “Both hold water”) over perceptual explanations (e.g. “Both are fluffy”) when interpreting a functional metaphor (e.g. “Clouds are sponges”). In Experiment 3, preschoolers preferred functional metaphors over nonsense statements in a dichotomous-choice task. Overall, this work demonstrates preschoolers’ early-emerging ability to understand functional metaphors.
Free will, decision-making and machine learning
The question of free will has been topical for millennia, especially considering its links to moral responsibility and the ownership of that responsibility. Free will, or volition, is an incredibly complex phenomenon - and cannot easily be reduced to a single empirical paradigm. Roskies (2010) proposes that there are five cognitive aspects to be considered when developing a more complete understanding of volition. These are: intention, initiation, feeling, executive control and decision-making. Decision-making will be the focus of this talk, which steps through aspects of the philosophy of free will; highlights experimental paradigms stemming from the seminal work of Benjamin Libet et al., and proposes machine learning as a promising method in progressing the empirical studies of decision-making and free will.
experimental paradigms coverage
3 items